ANSI/NISO 739.50-2003 ISSN: 1041-5653
(revision of Z39.50-1995)

Information Retrieval (Z39.50):
Application Service Definition and
Protocol Specification

Abstract: This standard defines a client/server based service and protocol for
Information Retrieval. It specifies procedures and formats for a client to search a
database provided by a server, retrieve database records, and perform related
information retrieval functions. The protocol addresses communication between
information retrieval applications at the client and server; it does not address interaction
between the client and the end-user.

An American National Standard
Developed by the
National Information Standards Organization

Approved November 27, 2002
by the
American National Standards Institute

Published by the National Information Standards Organization
Bethesda, Maryland

LALEEE NISO Press, Bethesda, Maryland, U.S.A.

©NISO

Published by

NISO Press

4733 Bethesda Avenue, Suite 300
Bethesda, MD 20814
WWW.niso.org

Copyright ©2003 by the National Information Standards Organization

All rights reserved under International and Pan-American Copyright Conventions. No part of this
book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopy, recording, or any information storage or retrieval system, without prior
permission in writing from the publisher. All inquiries should be addressed to NISO Press, 4733
Bethesda Avenue, Suite 300, Bethesda, MD 20814.

Printed in the United States of America
ISSN: 1041-5653 National Information Standard Series
ISBN: 1-880124-55-6

¥ This paper meets the requirements of ANSI/NISO Z39.48-1992 Permanence of Paper.

Library of Congress Cataloging-in-Publication Data

National Information Standards Organization (U.S.)

Information retrieval (239.50) : application service definition and protocol specification : an

American national standard / developed by the National Information Standards Organization.
p. cm. -- (National information standards series. ISSN 1041-5653)

"Approved November 27, 2002 by the American National Standards Institute."
"ANSI/NISO Z39.50-2003 (maintenance revision of 239.50-1995.)"
ISBN 1-880124-55-6 (alk. paper)
1. Library information networks--Standards--United States. 2. Information storage and
retrieval systems--Standards-- United States. 3. Computer network
protocols--Standards--United States. I. Title: Z39.50. Il American National Standards
Institute. 1l1. Title. IV. Series.

Z674.8.N44 2003
025'.0028546--dc21 200342115

©ONISO

ANSI/NISO Z39.50-2003

TABLE OF CONTENTS

L O Y 1Y@] = I SRRSO vii
L. INTRODUGCTIONitiiieiiiie ettt e sttt e st e e e sttt e e s ta e e e e sabe e e e s taeeeessbeeeeataeeaeastaeaeatseeeessseeaessaeaesasseeaeansseeenns 1
1.1 Scope and Field Of APPICALION. ..o et e e e e e e e e s e anbeeeeaaeeas 1
YT £ (o] o O TP PP PT PP 1
RS B L= (=T T o (o =L TP O P PP TTPP PO 1

2. DEFINITIONS ...ttt ettt sttt e ettt e e ss bt e e ettt e e an bt e e e s b be e e e anbe e e e e anteeeeanbteeeennbeeeesnsbeeesnnneeens 3
3. INFORMATION RETRIEVAL SERVICEcco ittt ettt e e 10
3.1 Model and Characteristics of the Information Retrieval Servicecccvoveiiiiiiiiee e 10
3.1.1 Z3B9.50 SEIVICES ..cceiuteieeiitieeeeittie e sttt e sttt e ettt e e sttt e e e sh bt e e st e e e e e shbe e e e et b e e e e aabe e e e abee e e e anbeeeeabaeeeee 10
3.1.2 Z39.50 OPEIALIONS ...eeeeeiiitiieeittiee ettt e et ee ettt e st e e sttt e e sabe e e e sbbe e e e anbb e e e s sabeeeeanbaeeesasbeeeeanbaeeeae 11
3.1.3 Model Of @ DAtADASE ... e e e e e e e e e nanaees 11
3.1.4 Searching @ Database.........ccouiiiiiiiie e 11
3.1.5 Retrieving Records from @ Database...........c.ueeiiiiiiieiiiiieiiieee et 12
3.1.6 MOdel Of @ RESUIL SEL... ...ttt e e e e e e e e e e e e e st e e e e e e e e s e nnneeeas 12
3.1.7 Model Of EXtENAEA SEIVICES ..ottt e e e e e e e e s naeee s 14
TN S = d o] = 1 o F PP T PP URTTPP 14

3.2 Facilities of the Information RetrieVal SErVICEcuuiiiiiii i 15
I T [a1 F= 4= L [T = Vo |) YRR 16
I 1= T (o o T -Vt) SR 22
I = =Y = L = o 1 R 32
3.2.4 ReSUIt-Set-0elEte FACIILYuveeieeiiiciiieie e c e e e s e e e s e e e e e e s e e e e e e e snnrneees 37
3.2.5 ACCESS CONLIOI FACIHTLYeeiiiiiiie ittt rbb e e e sbaee e 39
3.2.6 Accounting/Resource Control FACIHILYocueiiiiiiiiiiiiiee e 41
32,7 SOM FACIHIEY. ..eet ettt et e e st e e st b e e e sab e e e e e bb e e e e anbe e e e anbneee e e 48
3.2.7.2 Duplicate DEECION SEIVICEcccuuiii ittt e et e e e s abr e e e s snbeeeeaaes 51
3.2.8 BIrOWSE FACIIILYeeeitieeeiieieie ettt e et e e et e e s b e e e abne e e 55
I (O o d o] = 1L g T =Tl |1 TP RRTT P 67
3.2.11 Termination FaCIHILYeiiiiieee ettt e et e e e e e e e e e e e e e e nenneeas 81

3.3 Message/Record Size and SEgMENLALION............uviiiiiiiiiiiiieieee e 83
3.3.1 Procedures When No Segmentation is in EffeCt.........ccccccoiiiiiiiiii e, 84
IR T AV I RS Y= T =T o1 = 11T o SR 85
3.3.3 LeVvel 2 SEOMENTALIONvvviiiieee it e e s e e e e e s e e e e e s e e e e e e e aanraarraeeeannrareees 86

3.4 Operations and REfEIENCE-Iuueiiii i e e s e e e e e e s s e reaeeeeannes 90
3.5 CONCUITENT OPEIALIONSuveeeeiiieeee ittt ettt ettt ettt e st bt e e sab et eesbb et e e sabb e e e sbbe e e e sabb e e e sbbeeessnbbeeesnnneeas 91
3.6 COMPOSItION SPECITICALIONeiiiiiiieiiiiie ettt e e saneee s 92
3.7 Type-1 and tyPe-101 QUETIES.eeeiuriieiiiiee ettt ettt e ettt ettt s et e stbe e e e s bt et e e aabb e e e sbbe e e e sabseeesnnnees 95
3.7.1 Representation and Evaluation of the Type-1 and Type-101 QUENESccoocvverriiveeeniieeennnnn 96
T A (0) (11 117U URRTP 97
3.7.3 Restriction and the Extended Result SEt MOde |oooiiiiiiiii e 98

©NISO Page iii

ANSI/NISO Z39.50-2003

4, PROTOCOL SPECIFICATION. ... tttte ittt ittt e sttt e sttt e e stteeeasstaaaestteaaasssaeeessseeesassasaesnsseeesassaeeessseeenn 100
4.1 Abstract Syntax and ASN.1 Specification of Z39.50 APDUS.........cccccoiiiiieiiiieieieee e 100
A e (o] (o Tol o] I =t o] £ F PP RTPT ORI 100
o B = (o= 1011 0] F= Vi o] o PR PSSP PP TOPUPPPTPPN 100
N o] o] (o] g1 0 =T o (ot TP PTPT OO 102
4.4.1 General Conformance REQUIFEMENEScciiiiiiiiiee e iiiiiee e e e s este e e e e e e e s sree e e e e s s sennnaeeeeeessennes 102
4.4.2 Specific Conformance REQUITEMENTScoicuiiiiiee e iiiiieeee e s s e e e e e s st r e e e e s s ssanaeeeeeessennnes 102
4.4.3 Z39.50 Version 3 Baseline REQUITEMENTS........cuiiiiiiiiiiiiiee e cciiieee e st e e e s s e e e e e snnreaeeae s 113
O Tt R @ T (= (=0 T8 1T £=1 0 0= 1SS 114
4.4.3.2 Conditional REQUITEMENTS........iiiiiiiiie ittt st s st e et e e e enees 114
APPENDIXES
APPENDIX 1 OID: Z39.50 OBJECT IDENTIFIERSoiiiiiiiiiie ittt 116
OID.1 Object Identifier Assigned to This StaNardcc.cooiiiieiiiiiie e 116
(@11 52 @ o] = ox SO = 13- SR 116
OID.3 Object Identifiers for Z39.50 APDUS.........ccui ittt s e e e s e e e e e s annbaer e e e e e seneeeees 117
OID.4 Object Identifiers Used by This Standardccooviiiiiiiiee i 117
OID.5 Object Identifiers Assigned by the Z39.50 Maintenance AQENCYcccueeeeeeeiriiereeeeeeseeiieeeeenns 117
OID.6 Locally RegiStered ODJECESouii ittt e e e et e e e e e s et ee e e e e e s e neeneeas 117
OID.7 EXPerimental ODJECES.coi ittt e e e st e e e e e e st ae e e e e e e e e nnnbeeas 118
(0] o] [=Tox £ TP PP PPRTRPOP 118
APPENDIX 2 ATR: ATTRIBUTE SETSottt ittt se et e et e e sttee e s sntaeeesnsaeessnsneeesnnsneens 118
ATR.L AHNDULE SEE EXP-1 ..t e et e e e e e s e e e e s et e e e e e e e s st e aeeeaeessatntaeeeeeeessntenneeeeeas 118
F N A N (] o 1U) (ST A= 4 o R PP 120
APPENDIX 3 DIAG: Z39.50 DIAGNOSTICScciitiiieiitiiie ettt st e s e e b e e s snaae e e snneee s 121
DIAG.1 General DIagNOSHIC SELciuiiiiiiiiie ittt ettt e bt e st e e e bbe e e s snbeeeeennees 121
DIAG.2 General DIagnoStiC CONAINETcciiiiiieiiiiee ittt st e st e e et e e s sebe e e e ennes 128
DIAG.3 Returning Diagnostics in an INItRESPONSEueeiiiiiiie ittt 129
APPENDIX 4 REC: RECORD SYNTAXESooii ittt ittt ettt st e sttt e st e e s st e e e sstaeaassnaaeesnneeens 130
REC.1 EXPIain RECOM SYNTAX ...eeiiiiiiiiiiiiiieeiiiie ettt ettt ettt e et e e s nbe e e s annee e e ennes 130
REC.2 Simple Unstructured Text Record Syntax, SUTRScooiiiiiiiiieiiie e 130
REC.3 GENEeriC RECOI SYNTAX 1 ...ooiiiiiiiiiiiiie ettt e e e e s bbb e e e e e s s e abbe e e e e e e e e snnbneeaaaeeas 130
REC3.1 Embedding MARC in @ GRS-1 RECOIuuiiiiiiiiiiiiiiei et 130
REC.4 Record Syntax For Extended Services Task Packageccccccceeiiiiiiiiiie v 131
APPENDIX 5 RSC: RESOURCE REPORT FORMATS ...ttt ittt ettt 132
Resource Report FOrMat RESOUICE-2cciiiiieieeeieiie ettt ea e aeeeaeeeeeeeeeeeeeeeeeteeaeeaaeasaeees 132
APPENDIX 6 ACC: ACCESS CONTROL FORMATS ...oiiiiiiiiie ittt n 133
APPENDIX 7 EXT: EXTENDED SERVICES DEFINED BY THIS STANDARDcccoovviiiiiiiieeeereeeein, 134
o QI RS 1= AV Tt T = 11 01 1o PR 134

ANSI/NISO Z39.50-2003

EXT.2 ASN.1 Definitions of Extended Services Parameter Package............cccocveeeiiiiiiiniiie e, 147
APPENDIX 8 USR: USER INFORMATION FORMATS ...ci ittt ittt ettt e et e e sieee e e s nnvae e sneeae s 148
USR.L SEArChRESUI-L ...ttt et e e st s e seasseseseeeeeeeeereeeeeeeeaeeeaees 148
USR.2 Use of Init Parameters for User INfOrmation...............oooeiiiiiiiiio e 148
USR.3 General User Information Format, UsSerinfo-L............coooiiiiiiiiiiiiiie e 149
APPENDIX 9 ESP: ELEMENT SPECIFICATION FORMATStttiiiiiiie it ssiiee e sieee e ssiree e snbeee e snraeee e 150
ESP.1 Definition of Element Specification FOrmat @SPEC-2cccviiiiiiee i e e 150
ESP.2 Definition of Element Specification FOrmat @SPEeC-0ccovviiiriiiieeiiiiieie e e e 150
APPENDIX 10 VAR: VARIANT SETS ... ittt ittt sttt sttt ettt st e e s snba e e e sbtaeessnnaeeesnneeens 152
APPENDIX 11 TAG: TAGSET DEFINITIONS AND SCHEMAS.oo i 157
TAG.2 Definition Of tAgSEI-G......coiiiiiii ittt et e e b e e e b 160
APPENDIX 12 ERS: EXTENDED RESULT SET MODELoociiiiiiiiiiiec et 164
ERS.1 Extended ResuUlt Set MO fOFoiiiie e e e e e s 164
ERS.2 Extended Result Set Model for RESHIICHONuuuiiiiiiiiiiiiiiiiiiieiee e e e e 165
APPENDIX 13 RET: Z39.50 RETRIEVAL ..cciittiiiiiiiite ettt ettt et e s sntae e ssaae e e snaneeennnaee s 167
RET.1 Overview 0Of Z39.50 REIHEVAL..........oiiiiiiiiieiie e ee e e e 167
RET.2 Retrieval ODJECE CIASSES.cuii ittt e e e s e e e e e e s s anbaeeeeae s 168
RET.3 Retrieval Objects Defined in this Standard..............cccveeiiiie e 175
APPENDIX 14 NEGO: Z39.50 NEGOTIATION MODELcuvttiiiiiiiiiiiiie ittt 193
N =TeT@ 20 R N T=To o) = L o o TN =T o (o SR 193
NEGO.2 Rules Pertaining to the Use of Negotiation RECOIdS.........cccvvvvveeiiiiiiiiiie e 194
NEGO.3 Server-Mandated NeQOALION.uiiiiiiiieiiiee e s 194
NEGO.4 Adherence t0 thisS MOUEI...........uueiiiii e e e s e e e e e e enrneeeeee s 195
APPENDIX 15 NEGO2: DEVELOPMENT AND REGISTRATION OF NEGOTIATION RECORDS........ 196
APPENDIX 16 PRO: Z39.50 PROFILES ...ttt ittt ettt a st a et e e s snaaa e e nnaee s 198
L (o TR A [o1 (o To [T o o I PP 198
Pro.2 Profiles Respond to COmMMUNILY NEEUASueiiiiiiiiiiiiiiaae ettt a e e einbeeeee e 198
Pro.3 Applications Addressed BY ProfileS........oo i 199
Pro. 4 Development and Approval Of Profil@Scooo e 199
Pro. 5 Examples of Profiling Z39.50 Standard Services and Specificationsccccvvveveeeeviccivnennnnn. 200
L (0 TSN =T T (T 1o o SR 201
L (0T T T3 T = YR 202

©NISO Page v

ANSI/NISO Z39.50-2003

APPENDIX 17 239.50 ATTRIBUTE ARCHITECTURE ..ottt 203
Arch 1 Introduction and Preliminary NOES...........ueiiiiiie et e e e e eeeeaeeas 203
Arch 2. Attribute Set Class DefiNItiONSooi i e e 205
Arch 3. ATHDULE SO CIASS Leiiiiiiieiiiieiee ettt e e e e et e e e e e e s bbb e e e e e e e e e aanbeeneeaeeas 206
Arch 4. Lessons Learned: Recommendations for Future Enhancements to the Z39.50 Query........... 216

APPENDIX 18 ASNIL: Z39.50 ASN. L. o itiiiiiiiiiieitiite sttt sttt ettt e st e e s sibb e e sbbe e e s snbseeeabeeeeesnnbeeesnnnneens 217

APPENDIX 19 MAINTENANCE AGENCY, ZIG, AND HISTORICAL BACKGROUNDcccceeeernnnne. 262

©NISO Page vi

ANSI/NISO Z39.50-2003

Foreword

(This foreword is not a part of NISO Z239.50-2003 Information Retrieval (239.50): Application
Service Definition and Protocol Specification. It is included for information only.)

This standard is a maintenance revision of Z39.50-1995. Appendix 19 describes how this version
differs from Z239.50-1995, and the reasons for these changes.

This standard was processed and approved for submittal to ANSI by the National Information
Standards Organization. It was balloted by the NISO Voting Members March 29, 2002 - May 13,
2002. It will next be reviewed in 2007. Suggestions for improving this standard are welcome.
They should be sent to the National Information Standards Organization, 4733 Bethesda Avenue,
Suite 300, Bethesda, MD 20814. NISO approval of this standard does not necessarily imply that
all Voting Members voted for its approval. At the time it approved this standard, NISO had the
following members:

NISO Voting Members

3M
Jerry Karel
Susan Boettcher (Alt)

American Association of Law Libraries
Robert L. Oakley
Mary Alice Baish (Alt)

American Chemical Society
Robert S. Tannehill, Jr.

American Library Association
Paul J. Weiss

American Society for Information Science and
Technology
Mark H. Needleman

American Society of Indexers
Judith Gibbs
Jacqueline Rodebaugh (Alt)

American Theological Library Association
Myron Chace

ARMA International
Diane Carlisle

Armed Forces Medical Library
Diane Zehnpfennig
Emily Court (Alt)

Art Libraries Society of North America
David L. Austin

Association for Information and Image
Management
Betsy A. Fanning

Association of Jewish Libraries
Caroline R. Miller
Elizabeth Vernon (Alt)

©ONISO

Association of Research Libraries
Duane E. Webster
Julia Blixrud (Alt)

BiblioMondo Inc.
Martin Sach

Book Industry Communication
Brian Green

Broadcast Music Inc.
Edward Oshanani
Robert Barone (Alt)

Cambridge Information Group
Michael Cairns
Matthew Dunie (Alt)

Checkpoint Systems, Inc.

College Center for Library Automation
J. Richard Madaus
Ann Armbrister (Alt)

Congressional Information Service, Inc.
Robert Lester

divine, inc.
Robert Boissy

Elsevier Science Inc.
Anthony Ross
John Mancia (Alt)

Endeavor Information Systems, Inc.
Verne Coppi
Cindy Miller (Alt)

epixtech, inc.
John Bodfish
Ricc Ferante (Alt)

Page vii

Ex Libris
James Steenbergen
Carl Grant (Alt)

Follett Corp.
D. Jeffrey Blumenthal
Don Rose (Alt)

Fretwell-Downing Informatics
Robin Murray

Gale Group
Katherine Gruber
Justine Carson (Alt)

Gaylord Information Systems
William Schickling
Linda Zaleski (Alt)

GCA Research Institute
Jane Harnad

H.W. Wilson Company
Ann Case

IBM
David M. Choy
Chuck Brink (Alt)

Information Use Management & Policy
Institute

Charles McClure

John Carlo Bertot (Alt)

Infotrieve
Jan Peterson

Innovative Interfaces, Inc.
Gerald M. Kline
Sandy Westall (Alt)

Institute for Scientific Information

The International DOI Foundation
Norman Paskin

Library Binding Institute
Donald Dunham

The Library Corporation
Mark Wilson
Joe Zeeman (Alt)

Library of Congress
Winston Tabb
Sally H. McCallum (Alt)

Los Alamos National Laboratory
Richard E. Luce

Lucent Technologies
M.E. Brennan

Medical Library Association
Nadine P. Ellero
Carla J. Funk (Alt)

©ONISO

ANSI/NISO Z39.50-2003

MINITEX
Cecelia Boone
William DeJohn (Alt)

Modern Language Association
Daniel Bokser
Cameron Bardrick (Alt)

Motion Picture Association of America
William M. Baker
Axel aus der Muhlen (Alt)

Music Library Association
Mark McKnight
Lenore Coral (Alt)

National Agricultural Library
Gary K. McCone

National Archives and Records
Administration
Mary Ann Hadyka

National Federation of Abstracting and
Information Services
Marion Harrell

National Library of Medicine
Betsy L. Humphreys

Nylink
Mary-Alice Lynch
Jane Neale (Alt)

OCLC, Inc.
Donald J. Muccino

Openly Informatics
Eric Hellman (Alt)

Proquest Information and Learning
Todd Fegan
James Brei (Alt)

Recording Industry Assn. of America
Linda R. Bocchi
Michael Williams (Alt)

Research Libraries Group
Lennie Stovel
Joan Aliprand (Alt)

SIRS Mandarin, Inc.
Leonardo Lazo
Harry Kaplanian (Alt)

SIRSI Corporation
Greg Hathorn
Slavko Manojlovich (Alt)

Society for Technical Communication
Annette Reilly
Kevin Burns (Alt)

Society of American Archivists
Lisa Weber

Page viii

Special Libraries Association
Marcia Lei Zeng

Triangle Research Libraries Network
Jordan M. Scepanski
Mona C. Couts (Alt)

U.S. Department of Commerce, National
Institute of Standards and Technology,
Office of Information Services

ANSI/NISO Z39.50-2003

U.S. Department of Defense, Defense
Technical Information Center

Gopalakrishnan Nair

Jane L. Cohen (Alt)

U.S. National Commission on Libraries and
Information Science
Denise Davis

VTLS, Inc.
Vinod Chachra

NISO Board of Directors

At the time NISO approved this standard, the following individuals served on its Board of

Directors:

Beverly P. Lynch, Chair
University of California, Los Angeles

Jan Peterson, Vice Chair/Chair-Elect
Infotrieve, Inc.

Donald J. Muccino, Immediate Past Chair
OCLC

Jan Peterson, Treasurer
Infotrieve, Inc.

Patricia R. Harris, Executive Director
National Information Standards Organization

Pieter S. H. Bolman
Academic Press

Albert Simmonds
OCLC, Inc.

Priscilla Caplan
Florida Center for Library Automation

©ONISO

Carl Grant
Ex Libris (USA), Inc.

Brian Green
BIC/EDItEUR

Jose-Marie Griffiths
University of Pittsburgh

Richard E. Luce
Los Alamos National Laboratory

Sally McCallum
Library of Congress

Norman Paskin
The International DOI Foundation

Steven Puglia
U.S. National Archives and Records
Administration

Page ix

ANSI/NISO Z39.50-2003

Information Retrieval (Z39.50): Application Service
Definition and Protocol Specification

1. Introduction

This standard, ANSI/NISO Z39.50-2003, Information Retrieval (Z39.50) Application Service
Definition and Protocol Specification, defines an application protocol for search and retrieval of
information in databases.

1.1 Scope and Field of Application

This standard describes the Information Retrieval Application Service (section 3) and specifies
the Information Retrieval Application Protocol (section 4). The service definition describes
services that support capabilities within an application; the services are in turn supported by the
Z39.50 protocol. The description neither specifies nor constrains the implementation within a
computer system. The protocol specification includes the definition of the protocol control
information, the rules for exchanging this information, and the conformance requirements to be
met by implementation of this protocol.

This standard is intended for systems supporting information retrieval services for organizations
such as information services, universities, libraries, and union catalogue centers. It addresses
connection oriented, program - to - program communication. It does not specify a user interface.

1.2 Version

Z39.50-1995 specifies versions 2 and 3 for the Z39.50 service and protocol. This standard
Z39.50-2003 also specifies versions 2 and 3, and additionally, incorporates many clarifications,
amendments, defect corrections, and implementer agreements, all of which have been endorsed
by the Z39.50 Implementers Group.

Z39.50-1992 specifies version 2 only. Version 2 of Z39.50 is assumed identical to version 1 of
Z39.50; thus implementations that support version 2 automatically support version 1. Implementa-
tions that support version 3 are required to support version 2 (and thus version 1 as well).

Certain procedures specified within the standard apply specifically to version 2 or version 3 and
are noted as such.

1.3 References
ANSI/NISO Z39.53-2001 Codes for the Representation of Languages for
Information Interchange.

ISO 2709 Documentation - Format for Bibliographic Information
Interchange on Magnetic Tape.

©NISO Page 1

ISO 4217

ISO 8777

ISO 8824:1990
ISO 8825:1990

1SO 10160

ISO 10161

ANSI/NISO Z39.50-2003

Codes for the representation of currencies and funds
1990.

Information and Documentation - Commands for
Interactive Text Searching.

Specification of Abstract Syntax Notation one (ASN.1).

Specification of basic Encoding Rules for Abstract
Syntax Notation one (ASN.1/BER).

Information and Documentation - Interlibrary Loan
Application Service Definition for Open Systems
Interconnection 1991.

Information and Documentation - Interlibrary Loan
Application Protocol Specification for Open Systems
Interconnection 1991.

©NISO Page 2

2. Definitions

ANSI/NISO Z39.50-2003

Abstract database record

Abstract record structure

Abstract syntax

Abstract syntax notation

Access point

Access point clause

Aggregate present response

APDU

Application Protocol

Application Protocol Data Unit

Application ProtocolControl Information

AppliedVariant

An abstract representation of the information in a
database record. An abstract database record may be
formed by the application of an abstract record structure
(defined by a schema) to the database record. An
element specification may be applied to an abstract
database record forming another instance of the abstract
database record.

The primary component of a database schema. An
abstract record structure applied to database record
results in an abstract database record.

A description of a particular data type using an abstract
syntax notation. It can be referenced by an OID (object
identifier).

A language that allows the description of data types in a
representation-independent manner. ASN.1 is an
example.

A unique or non-unique key that can be specified (either
alone or in combination with other access points) in a
search for records. An access point may or may not
correspond to one or more elements (defined by an
abstract syntax),.

An operand of a type-1 query (informal).

Segment requests (if any) together with the Present
response, for a Present operation.

See Application Protocol Data Unit.

The rules governing the format and exchange of
information between a client and server.

A unit of information, transferred between client and
server, whose format is specified by the Z39.50 protocol,
consisting of application-protocol-information and
possibly application-user-data.

Information conveyed by an application protocol data
unit.

One of three usages for a variant specification. The
applied variant is the variant specification that the server
applied to an element included in a retrieval record. See
also variantRequest and supportedVariant.

ONISO Page 3

ARS
ASN.1
Attribute

Attribute element

Attribute list

Attribute set

Attribute set id

Attribute type

Attribute value

bib-1

Client
Client system

Composition specification

Conditionally confirmed service

ANSI/NISO Z39.50-2003

See Abstract record structure.
Abstract Syntax Notation One, as specified in ISO 8824.

A characteristic of a search term, or one of several
characteristic components which together form a
characteristic of a search term.

An attribute represented by a pair of components: an
attribute type and a value of that type.

A set of attribute elements and the attribute set id to
which it belongs. An attribute list is combined with a
search term to form an operand of a type-1 query.
Usually, one of the attribute elements from the set
corresponds to a normalized access point, against which
the term (as qualified by the other attribute elements) is
matched.

A set of attribute types, and for each, a list of attribute
values. Each type is represented by an integer, unique
within that set (as identified by its attribute set id), and
each value for a given type is unique within that type.

An OID that identifies an attribute set, to which an
attribute element (within an attribute list) belongs.

A component of an attribute element. An attribute set
defines one or more attribute types and assigns an
integer to each type (it also defines values specific to
each type). For example, bib-1 assigns the integer 1 for
the attribute type "Use."

A component of an attribute element. An attribute set
defines one or more values for each attribute type that it
defines. For example, bib-1 defines the Use attribute
"personal name."

An attribute set, formerly defined in Z39.50-1995. Its
definition is available at
http://lcweb.loc.ogv/z3950/agency/defns/bibl.html

The initiating application.
The system on which the client resides.

A specification that may be included in a Present request
to indicate the desired composition (elements and record
syntax) of the retrieval records. It includes a schema
identifier, element specification, and record syntax
identifier.

A service that may be invoked as confirmed or non-
confirmed. It is defined in terms of a request (from the

ONISO Page 4

Confirmed service

Database

Database record

Database schema

Data element
Element

ElementRequest

Element set name

Element specification

Element specification format

Element specification identifier

Exceptional record size

ANSI/NISO Z39.50-2003

client or server) followed possibly by a response (from
the peer). For example, Resource-control is a
conditionally confirmed service, initiated by the server.
See also Non-confirmed service and Confirmed service.

A service that is defined in terms of a request (from the
client or server) followed by a response (from the peer).
For example, Search is a confirmed service, initiated by
the client; Access-control is a confirmed service initiated
by the server. See also Non-confirmed service and
Conditionally-confirmed service.

A collection of information units containing related
information. Each unit is a database record.

A local data structure representing an information unit in
a database.

A common understanding shared by the client and
server of the information contained in the records of the
database, which allows the subsequent selection of
portions of that information via an element specification.
A schema defines an abstract record structure, which,
when applied to a database record, results in an abstract
database record.

See Element.
A unit of information defined by a schema.

A request, included with an element specification, for the
retrieval of a specific element. The element request may
include a variantRequest, indicating the desired variant
form of the element.

An element specification in the form of a primitive name.

An instance of an element specification format, or an
element set name. An element specification transforms
an abstract database record into another instance of the
abstract database record (this may be a null
transformation). The element specification selects
elements from the abstract database record, and
possibly also specifies variant forms for those elements.

A structure used to express an element specification.

The object identifier of an element specification format,
or an element set name.

The maximum size of the record that may be included in
a Present response, in the special case when a single,
exceptionally large record (i.e. larger than
preferred-message-size) is requested.

ONISO Page 5

Facility

Final fragment

Fragment

GRS
Initiating request

Intermediate fragment

IR

Item

Leaf-node

Maximum segment size

Non-confirmed service

Object identifier

OID

Operation

Operation type

ANSI/NISO Z39.50-2003

A logical group of Z39.50 services; in some cases, a
single service. For example, the Retrieval facility
consists of the Present service and the Segment service;
the Search facility consists of the Search service.
Alternatively, a facility might not consist of services, but
instead might use services of other facilities. For
example, the Explain facility does not define any
services, but uses the Search and Present services.

A fragment that ends at the end of a record. See
Fragment.

A proper substring of a record. (This definition is
meaningful only in the context of level-2 segmentation,
described in section 3.3.3; within that section, a record is
considered to be a string of bytes.)

Generic Record Syntax.
A request that initiates an operation.

A fragment that neither starts at the beginning nor ends
at the end of a record. See Fragment.

Information Retrieval.

(1) A result set item. (2) A bibliographic item; see ISO
10160.

A terminal node in a tree. A node with no children.

The largest allowable segment of an aggregate Present
response (when segmentation is in effect).

A service that is defined in terms of a request from the
client or server, with no corresponding response. For
example, Segment is a non-confirmed service initiated
by the server. See also Confirmed service.

An unambiguous, globally-recognized, registered
identifier for a data object, assigned by a registration
authority.

See Object identifier.

An initiating request and the corresponding terminating
response, along with intervening related messages. For
example, a Search operation always includes a Search
request and Search response, and may also include
access control and resource control messages. Multiple
concurrent operations may occur within a Z-association.

The name of an initiating request. For example, a
Search request initiates an operation whose type is
"search."

ONISO Page 6

Preferred message size

Primitive Name

Record syntax

Response record

Result set

Result set item

Result set record

Retrieval record

RPN
Schema

Segment

Server

Server system

Service

Simple Present response

ANSI/NISO Z39.50-2003

The maximum size of a Search response or Present
response when no segmentation is in effect. It is
expressed in terms of the sum of the sizes (in bytes) of
the response records, not including protocol control
information.

A name whose internal structure is not required to be
understood or have significance to users of the name.

An abstract syntax requested by the client or used by the
server to represent retrieval records. For a complete
definition, see section 3.6.3.

A retrieval record or a surrogate diagnostic record,
representing a database record, in a Search response or
(aggregate) Present response.

A local data structure used as a selection mechanism for
the transfer of records, identified by a query. Its logical
structure is a named, ordered list of result set items, and
possibly, unspecified information which may be used as
a surrogate for the search that created the result set.

A database name, a pointer to a record within the
database, and possibly, additional, unspecified
information associated with the record.

(Informal) The database record represented by a result
set item. See Result set.

The exportable structure defined by the application of a
record syntax to an abstract database record.

Reverse Polish Notation.
See Database schema.

A message that is sent (or is in preparation for
transmission) by the server as part of an aggregate
Present response, i.e. a Segment request or Present
response.

The responding application, associated with one or more
databases.

The system on which the server resides.

(1) A Z39.50 service, as in the "search" service; (2) an
extended service, as in the "persistent result set
extended service".

An aggregate Present response consisting of a single
segment, i.e., consisting of a Present response only, and
no Segment requests.

ONISO Page 7

Starting fragment

SupportedVariant

Surrogate diagnostic Record

Tag

TagPath

TagSet

TagSetld

TagType

TagValue

Terminating response

Transfer syntax

Triple

Variant

Variant list

VariantRequest

ANSI/NISO Z39.50-2003

A fragment that starts at the beginning of a record. See
Fragment.

One of three usages for a variant specification. A
supportedVariant is a variant specification that the server
lists as supported for a particular element. See also
appliedVariant and variantRequest.

A diagnostic record supplied in place of a retrieval
record, representing a database record.

The identifier of an element (or of a node of the tagPath
representing an element). It consists of a tagType and a
tagValue.

A sequence of nodes from the root of a tree to the node
that the tagPath represents (when the elements of a
record are represented hierarchically, as a tree). Each
node of a tagPath is represented by a tag. The end-node
might be a leaf-node, in which case the tagPath
represents an element; otherwise the tagPath represents
the subtree whose root is that node.

The tagValues (and recommended data types) for a set
of elements.

An object identifier serving as a persistent identifier for a
tagSet.

A short-hand (integer) identifier for a tagSet. A schema
definition may assign a tagType to a TagSetld, to identify
a particular tagSet (within the context of the schema
definition).

The identifier of an element (or of a node of the tagPath
representing an element). It may be either integer or
string, and it is qualified by a tagType.

A response that ends an operation.

A syntax that when paired with an abstract syntax forms
a record syntax.

A 3-tuple. (l.e. an n-tuple, where n = 3.)

One of possibly several forms in which an element is
available for retrieval. The client may request, or the
server present, an element according to a specific
variant. The server may indicate what variants are
available for an element.

A list provided by the server of the supportedVariants for
a particular element.

One of three usages for a variant specification. A

ONISO Page 8

Variant set

Variant set identifier

Variant Specification

Variant Specifier

Z-association

Z39.50-association

ANSI/NISO Z39.50-2003

variantRequest is a variant specification occurring within
an element request. See also appliedVariant and
supportedVariant.

A definition of a set of classes; for each class, a set of
types; and for each type, a set of values. A variant
specification consists of a set of variantSpecifiers from a
particular variant set.

An OID identifying a variant set.

A variantRequest, appliedVariant, or supportedVariant. A
variant specification is a sequence of triples, each of
which is a variantSpecifier.

A component of a variant specification. It consists of a
class, a type defined for that class, and a value defined
for that type.

See Z39.50-association.

A session, explicitly established by the client and either
explicitly terminated by the client or server, or implicitly
terminated by loss of connection. Communication
between client and server is via a Z39.50-association.

ONISO Page 9

ANSI/NISO Z39.50-2003

3. Information Retrieval Service

The Information Retrieval service definition describes an activity between two applications: an
initiating application, the client, and a responding application, the server. The server is associated
with one or more databases.

Communication between the client and server is carried out by the Z39.50 protocol. The
specification is logically divided into procedures pertaining to the client and procedures pertaining
to the server.

3.1 Model and Characteristics of the Information Retrieval Service

Communication between client and server is via a Z39.50-Association (Z-association). A
Z-association is explicitly established by the client and may be explicitly terminated by either
client or server, or implicitly terminated by loss of connection.

There may be multiple consecutive Z-associations for a connection. There may be multiple
consecutive as well as concurrent operations (see 3.1.2) within a Z-association.

The roles of client and server may not be reversed within a Z-association. A Z-association cannot
be restarted, thus once a Z-association is terminated no status information is retained, except
information that is explicitly saved.

The service definition describes services and operations; models for these are described in 3.1.1
and 3.1.2. Services are grouped by facilities; the Z39.50 facilities and services are defined in 3.2.

3.1.1 Z39.50 Services

Z39.50 services are carried out by the exchange of messages between the client and server. A
message is a request or a response. Services are defined to be confirmed, non-confirmed, or
conditionally-confirmed. A confirmed service is defined in terms of a request (from the client or
server) followed by a response (from the peer). For example, Search is a confirmed service,
initiated by the client; the Search service is defined in terms of a Search request from the client
followed by a Search response from the server. Access-control is an example of a confirmed
service initiated by the server.

A non-confirmed service is defined in terms of a request from the client or server, with no
corresponding response. For example, TriggerResourceControl is a non-confirmed service
initiated by the client; Segment is a non-confirmed service initiated by the server.

A conditionally-confirmed service is a service that may be invoked as either a confirmed or non-
confirmed service. It is defined in terms of a request (from the client or server) followed possibly
by a response (from the peer). For example, Resource-control is a conditionally-confirmed
service, initiated by the server.

ONISO Page 10

ANSI/NISO Z39.50-2003

3.1.2 Z39.50 Operations

This standard describes nine operation types: Init, Search, Present, Delete, Scan, Sort,
Resource-report, Extended-services, and Duplicate Detection.

A request from the client of a particular operation type initiates an operation of that type (for
example a Search request initiates a Search operation) which is terminated by the respective
response from the server. Only the client may initiate an operation, and not all client requests do
so (see 3.4).

A request that initiates an operation is called an initiating request and a response that ends an
operation is called a terminating response. From the client perspective, an operation begins when
it issues the initiating request, and ends when it receives the terminating response. From the
server perspective, the operation begins when it receives the initiating request and ends when it
sends the terminating response. An operation consists of the initiating request and the
terminating response, along with any intervening related messages (see 3.4).

3.1.3 Model of a Database

The objective of this standard is to facilitate interconnection of clients and servers for applications
where clients search and retrieve information from server databases. The ways in which
databases are implemented differ considerably; different systems have different styles for
describing the storage of data and the means by which it can be accessed. A common, abstract
model is therefore used in describing databases, to which an individual system can map its
implementation. This enables different systems to communicate in standard and mutually
understandable terms, for the purpose of searching and retrieving information from a database.
The search and retrieval models are described in 3.1.4 and 3.1.5.

The term database, as used in this standard, refers to a collection of records. Each record is a
collection of related information. The term database record refers to a local data structure
representing the information in a particular record. Associated with a database are one or more
sets of access points that can be specified in a search for database records (see 3.1.4), and one
or more sets of elements that may be retrieved from a database record (see 3.1.5). An access
point is a unique or non-unique key that can be specified (either alone or in combination with
other access points) in a search for records. An access point may or may not correspond to one
or more elements (defined by an abstract syntax), For example, the (abstract) access point “title”
might be used to search a particular database and might correspond to the Main Title data
element for that database. The same access point might be used to search a different database,
and for that database it might correspond to the Series Title data element.

3.1.4 Searching a Database

A query is applied to a database, specifying values to be matched against the access points of
the database. The subset of records formed by applying a query is called the result set (see
3.1.6). A result set may itself be referenced in a subsequent query and manipulated to form a new
result set.

A search request specifies one or more databases and includes a query. The type-1 query

defined in this standard (see 3.7) consists of either a single access point clause, or several
access point clauses linked by logical operators. For example:

ONISO Page 11

ANSI/NISO Z39.50-2003

In the database named "science fiction" find all records for which 'title’ contains
"galaxy" AND 'author' contains "adams". (“‘'title’ contains "galaxy" “ is an access
point clause, as is “ 'author' contains "adams" “. “AND” is a logical operator.)

Each access point clause consists of a search term and attributes. The attributes qualify the term;
usually, one of the attributes corresponds to a normalized access point, against which the term
(as qualified by the other attributes) is matched. Each attribute is a pair representing an attribute
type and a value of that type (for example, type might be "usage" and value "author"; or type
might be "truncation" and value "left").

Each attribute is qualified by an attribute set id, which identifies the attribute set to which the
attribute belongs. An attribute set specifies a set of attribute types, and for each, a list of attribute
values.

3.1.5 Retrieving Records from a Database

Following the processing of a search, the result set is available at the server, for reference by the
client, for subsequent searches or retrieval requests. When requesting the retrieval of a record
from a result set, the client may supply a database schema identifier, element specification, and

record syntax identifier.

For the purpose of retrieving records from a result set, associated with each database are one or
more schemas. A schema represents a common understanding shared by the client and server of
the information contained in the records of the database, to allow the subsequent selection of
portions of that information via an element specification.

A schema defines an abstract record structure which, when applied to a database record results
in an abstract database record, which is an abstract representation of the information in the
record. An element specification applied to an abstract database record result in another instance
of the abstract database record (the latter may be a null transformation). The element
specification selects elements from the abstract database record, and may also specify variant
forms for those elements.

The server applies a record syntax to an abstract database record, resulting in an exportable
structure referred to as a retrieval record.

3.1.6 Model of a Result Set

Logically, a result set is an ordered list of items, each of which is a pointer to a database record; it
is used as a selection mechanism for the transfer of database records identified by a query. A
result set itself is considered to be a purely local data structure and is not transferred (that is,
records are transferred, but not the local pointers to the records).

In general, it is assumed that query processing does not necessarily require physical access to
records; a result set is thus assumed to be the identification of (e.g., pointers to) records, as
opposed to the actual set of records, selected by a query.

It is important to distinguish the physical implementation from the abstract model. How a server
chooses to implement result sets is an implementation matter; a result set may be a copy of the

ONISO Page 12

ANSI/NISO Z39.50-2003

database records, a table of pointers, or there may not even be a physical result set (the server
might execute the query every time the result set is referenced, package up and send the
requested records, and otherwise immediately discard the results; however, the result set model
does require that a result continue to refer to the same records in the same order). But from the
client point of view (and the abstract model) the result set is a set of items, or vectors, where each
includes a database name and a pointer to a record within the database.

3.1.6.1 Concurrency and Update Considerations

It is not assumed that the database records are locked. Methods of concurrency control, which
would prevent modification or deletion of result set records, are not addressed by this standard.

The server could potentially modify a record pointed to by a result set. For example suppose the
client requests record 1, and then subsequently requests record 1 again; the second time, the
record may have changed. There is no direct mechanism provided by Z39.50 to prevent this
(though Extended Services might be used to lock a record). When a client does modify a record
referenced by a result set, then when the client subsequently requests the record, the server
might refuse to supply it and instead supply a surrogate diagnostic, but there is no such
requirement.

A successful search (see 3.2.2.1.10) results in the creation of a result set. However, a server may
unilaterally delete a result set at any time for no specified reason; the next time that the client
attempts to refer to that result set (for example in a Present request) the server might send a
diagnostic to the effect "result set does not exist". (The server may instead send a diagnostic to
the effect that "the result set no longer exists because it was unilaterally deleted", however, the
server is not obliged to do so and may simply take the position that the result set never existed.)
Therefore, although in the abstract a successful search results in the creation of a result set, as a
practical matter, if a server does not actually create a result set, it is not violating the Z39.50
protocol.

3.1.6.2 Order of Result Set Records

The records in a result set are not necessarily ordered according to any specific or predictable
scheme (although, whatever the order, it is assumed static). Thus assume for example there is a
result set of 100 records, and the client wants the three most recent (i.e. based for example on
‘date of publication’). There is no simple way to find those records, short of retrieving all the
records in the result set. The Z239.50 Sort service however allows the client to request that a
particular result set be sorted based on a specific key (e.g. ‘date of publication’, descending). If
the server supports the sort service (and also supports sorting on the requested key, in this
example, ‘date of publication’) then following the Sort, the client may subsequently retrieve the
first three records, and they will be the three most recent.

3.1.6.2 Logical Structure of a Result Set

For the purpose of retrieving records, the logical structure of a result set is that of a named,
ordered list of items. Each item is a triple consisting of:

@ An ordinal number corresponding to the position of the triple in the list
(b) A database name
(c) A unique identifier (of local significance only) of a record within the database named in (b)

ONISO Page 13

ANSI/NISO Z39.50-2003

A result set item is referenced by its position within the result set, that is, by (a).

For the purpose of searching, when a result set is used as an operand in a query, the logical
structure is one of the following:

Basic model A set of pairs, each consisting of (b) and (c) of the above
model for retrieval.

Extended model A set of triples, each consisting of (b) and (c) of the
retrieval model; and including unspecified information
associated with each record, which may be used as a
surrogate for the search that created the result set.

Note: Query specifications may indicate that the basic model applies, or under what condition the
extended model applies and the nature of the unspecified information. For the type-1 query,
when version 2 is in effect, the basic model applies.

3.1.7 Model of Extended Services

The family of Z39.50 services includes the Extended Services (ES) service. "Extended services"
refers to a class of services recognized by this standard, but which are not Z39.50 services (as
described in 3.1.1). The ES service is a Z39.50 service, and an ES operation results in the
initiation of an extended services task. The task is not considered part of the Z39.50 ES
operation.

An ES operation is initiated by the client, via an ES request. The ES response, which completes
the operation, does not (necessarily) signal completion of the task; it may indicate for example
that the task has started or is queued (or it might indicate that the task has been completed; in
fact the ES request may specify that the task should be completed prior to the ES response). An
ES task may have a lifetime beyond the Z-association.

Examples of extended services are: saving a result set or query, and exporting or ordering a
document.

Each ES task is represented by a database record, called a task package, maintained by the
server in a special database, the "extended services database". The client uses the ES request to
cause creation of a task package on the ES database. The database may be searched, and
records retrieved, by the Z39.50 Search and Retrieval facilities. The client may search for
packages of a particular type, or created by a particular user, or of a particular status (i.e.
pending, active, or complete), or according to various other criteria. In particular, the client may
search the database after submitting an ES request (during the same or a subsequent Z-
association), for a resulting task package, to determine status information pertaining to the task,
for example, to determine whether the task has started.

3.1.8 Explain

The client may obtain details of the server implementation, including databases, attribute sets,
diagnostic sets, record syntaxes, and element specifications supported. The client obtains these
details through the Z39.50 Explain facility. The server maintains this information in a database
that the client may access via the Z39.50 Search and Present facilities.

ONISO Page 14

ANSI/NISO Z39.50-2003

This "explain" database appears to the client as any other database supported by the server, but
it has a well-known name and a pre-defined record syntax. Also, certain search terms,
corresponding to information categories, are predefined in order to allow a semantic level of
interoperability. Each information category has its own record layout, and all are included in the

Explain syntax.

3.2 Facilities of the Information Retrieval Service

Sections 3.2.1 through 3.2.11 describe the eleven facilities of the Information Retrieval service.
Most consist of logical groups of services; in several cases, a facility consists of a single service.
Additional services may be added to any facility in future versions of this standard. Following is a
summary description of the eleven facilities.

Initialization Facility

Search Facility

Retrieval Facility

Result-set-delete Facility

Browse Facility

Sort Facility

Access Control Facility

Init Service: A confirmed service invoked by the client to
initiate an Init operation.

Search Service: A confirmed service invoked by the
client to initiate a Search operation.

The Retrieval facility consists of two services:

- Present Service: A confirmed service invoked by the
client to initiate a Present operation.

- Segment Service: A non-confirmed service initiated
by the server, during a Present operation.
Note: a Present operation thus consists of a Present
request followed by zero or more Segment requests
followed by a Present response.

Delete Service: A confirmed service invoked by the client
to initiate a Delete operation.

Scan Service: A confirmed service invoked by the client
to initiate a Scan operation.

The Sort facility consists of two services:

- Sort Service: A confirmed service invoked by the
client to initiate a Sort operation.

- Duplicate Detection Service: A confirmed service
invoked by the client to initiate a Duplicate Detection
operation.

Access-control service: A confirmed service initiated by
the server. It does not initiate an operation, and it might
or might not be part of an active operation.

Accounting/Resource Control Facility The Accounting/ Resource Control facility consists of

three services:

- Resource-control Service: A conditionally-confirmed
service initiated by the server. It does not initiate an
operation, and it might or might not be part of an

ONISO Page 15

Explain Facility

Extended Services Facility

Termination Facility

3.2.1 Initialization Facility

ANSI/NISO Z39.50-2003

active operation.

- Trigger-resource-control Service: A non-confirmed
service initiated by the client during an operation.

- Resource-report Service: A confirmed service
invoked by the client to initiate a Resource report
operation.

The Explain facility does not include any services, but
uses the services of the Search and Retrieval facilities.

Extended-services Service: A confirmed service invoked
by the client to initiate an Extended-services operation.

Close Service: A confirmed service initiated by the client
or server. It does not initiate nor is it part of any
operation. It allows a client or server to abruptly
terminate all active operations and to initiate termination
of the Z-Association. (Following termination of the Z-
Association the client may subsequently attempt to
initialize another Z-Association using the Init service.)

The Initialization facility consists of the single service, Init.

3.2.1.1 Init Service

The Init service enables the client to establish a Z-association. In the Init request, the client
proposes values for initialization parameters. In the Init response, the server responds with values
for the initialization parameters; those values, which may differ from the client-proposed values,

are in effect for the Z-association.

If the server responds affirmatively (Result = 'accept’), the Z-association is established. If the
client then does not wish to accept the values in the server response, it may terminate the Z-
association, via the Close service (and may subsequently attempt to initialize again). If the server
responds negatively, the client may attempt to initialize again.

Parameters of the Init Service

Parameter Name Client Request Server Response Reference
Version m m 32111
Id/authentication 0 3.2.1.1.2
Options m m 3.2.1.13
Preferred-message-size m m 32114
Exceptional-record-size m m 3.2.1.14
Result m 3.2.1.15
Implementation-id 0 0 3.21.1.6

ONISO Page 16

ANSI/NISO Z39.50-2003

Parameter Name Client Request Server Response Reference
Implementation-name 0 0 3.21.16
Implementation-version 0 0 32116
User-information-field 0 0 3.21.17
Other-information 0 0 32118
Reference-id 0 ia 34

Key:
m Mandatory
0 Optional
ia If applicable

3.2.1.1.1 Version

Both the client and server indicate all versions that they support. The highest common version is
selected for use, and is said to be 'in force,' for the Z-association. If there are no versions in
common, the server should indicate 'reject' for the parameter Result.

Notes:
1. Version numbers higher than the highest known version should be ignored.
2. Versions 1 and 2 are identical. Systems supporting version 2 should indicate support for

version 1 as well, for interoperability with systems that indicate support for version 1 only.
(Note: version 1 is not defined by this standard, however there may be implementations
that indicate support for version 1, based on other, obsolete standards.)

3.2.1.1.2 Id/Authentication

The client and server agree, outside the scope of the standard, whether or not this parameter is
to be supplied by the client, and if so, to the value. This value is used by the server to determine if
the client is authorized to enter into communication with the server.

3.2.1.1.3 Options

For each of the capabilities (represented by an “option bit”) in the table below, the client proposes
either 'on’ or 'off' (meaning 'in effect’ or 'not in effect’ respectively) and the server responds
correspondingly for each. The response determines whether the capability is in effect.

Option Bit Option Description
0 Search See Note 1
1 Present See Note 1
2 Delete Result Set See Note 1
3 Resource Report See Note 1
4 Trigger Resource Control See Note 2
5 Resource Control See Note 3

ONISO Page 17

ANSI/NISO Z39.50-2003

Option Bit Option Description
6 Access Control See Note 3
7 Scan See Note 1
8 Sort See Note 1
9 Unused
10 Extended Services See Note 1
11 Level 1 Segmentation See Note 4
12 Level 2 Segmentation See Note 4
13 Concurrent Operations See Note 6
14 Named Result Sets See Note 5
15 Encapsulation See 4.3
16 resultCount parameter in Sort Response See Note 8
17 Negotiation Model See Note 9
18 Duplicate Detection See Note 1
19 Query type 104 See Note 10
20 PeriodicQuery ES Correction See Note 11
21 Use of string values for schema in See Note 12

compSpec
Notes:
1. For each 239.50 operation type -- search, present, delete, resource-report, scan, sort,

extended-services, duplicate detection -- the client indicates that it may choose to initiate
operations of that type by setting the value for that type to ‘in effect’; if so, the server
indicates whether it is willing to process an operation of that type. If the client proposes
'not in effect’ for a particular operation type, the server must also specify 'not in effect'.

The client may propose to submit Trigger-resource-control requests; if so, the server
indicates whether it will accept Trigger-resource-control requests. If the client proposes
'not in effect,’ the server must also specify 'not in effect'. If the server specifies 'in effect'
for Trigger-resource-control, but 'not in effect’ for 'resource-control,’ then the client may
use only the Cancel function of Trigger-resource-control. The server may indicate
unwillingness to accept Trigger-resource-control requests even if it specifies 'in effect’ for
'resource-control’. The server's indication of willingness to accept
Trigger-resource-control requests does not imply that the server will take any action as a
result of a Trigger-resource-control request.

The client indicates whether it proposes to permit the server to invoke Resource-control
and/or Access-control (i.e. send Resource-control and/or Access-control requests). The
server specifies that it may choose to (or will not) invoke Resource-control and/or
Access-control. If the server specifies 'not in effect' for resource-control (or
access-control) then it will not invoke resource-control (or access control) even if the
client has proposed 'in effect’. If the client proposes 'not in effect' for resource-control,
and the server indicates 'in effect' for resource-control, indicating that it is not willing to
suppress Resource-control requests, and if indeed the client cannot accept
Resource-control requests, the client should terminate the Z-association. If the client

ONISO Page 18

ANSI/NISO Z39.50-2003

proposes 'not in effect’ for access-control, and if security requirements on the server
system mandate that security (other than that which might be provided by the parameter
Id/authentication) be invoked at the outset of a Z-association, then the server should
reject the Z-association (by setting the parameter Result to ‘reject,’ and specifying 'in
effect’ for ‘access-control’). However, security may be invoked at different levels. In
addition to authentication at the outset of a Z-association, security might be invoked to
control access to a particular database, record, result-set, resource-report format, or use
of an operation. Thus if the client proposes 'not in effect' for access-control, and the
server normally invokes security (other than at the Z-association level), the server need
not necessarily reject the Z-association. The server might wish to invoke a security
challenge during an Init operation to determine whether the client is authorized to use a
capability it has proposed. If the client has proposed 'not in effect' for access-control, the
server may simply refuse the use of that particular operation via the Options parameter. If
the client proposes 'not in effect’ for access-control, and the server chooses to accept the
Z-association, and if the client subsequently initiates an action that would precipitate an
Access-control request (for example, if the client issues a Search specifying a database
for which it has not yet established credentials), the server should suppress the
Access-control request and instead respond with an error status indicating that a security
challenge was required but could not be issued.

The client proposes one of the following:

1. "no segmentation”, by specifying 'not in effect' for both level 1 and level 2
segmentation;

2. '"level 1 segmentation”, by specifying 'in effect’ for level 1 and 'not in effect' for level 2
segmentation; or

3. "level 2 segmentation", by specifying 'in effect’ for level 2 segmentation.

If the client proposes 'in effect’ for level 2 segmentation then it may also
propose 'in effect' for level 1 segmentation to indicate that if the server is
unable to support level 2 segmentation, the client wishes level 1
segmentation to be in effect.” Segmentation" is said to be 'in effect' if
either level 1 or level 2 segmentation is in effect. Segmentation may be
in effect only when version 3 is in force. The server response indicates
which, if either, form of segmentation it intends to perform. If the server
specifies neither level 1 nor level 2 then 'no segmentation' is in effect,
regardless or what the client has proposed. If the server specifies level 1
(but not level 2) segmentation, it will not perform level 2 segmentation,
and the client must be prepared to accept level 1 segmentation,
regardless of what the client has proposed. If the server specifies level 2
segmentation, the client must be prepared to accept level 2
segmentation regardless of what it has proposed (the server value for
level 1 should be 'not in effect’). When 'no segmentation’ is in effect, the
server response to a Present request must consist of a single message
(a single "segment”, i.e. a Present response only, with no intervening
Segment requests), containing an integral number of records. When
‘Level 1 segmentation' is in effect the server may respond to a Present
request with multiple segments (i.e. a Present response, with possibly
one or more intervening Segment requests); each must contain an
integral number of records. When 'Level 2 segmentation' is in effect the
server may respond to a Present request with multiple segments, and
individual records may span segments. Segmentation procedures are

ONISO Page 19

10.

11.

ANSI/NISO Z39.50-2003

detailed in section 3.3.

The client may propose to be permitted to use named-result sets (i.e. to specify result set
names other than "default" as the value of Result-set-name within a Search request); if
so, the server specifies whether it will support named-result-sets. If the client proposes
'not in effect,’ the server must also specify 'not in effect'.

The client may propose to be permitted to initiate concurrent operations; if so, the server
indicates whether it will accept concurrent operations. If the client proposes 'not in effect,’
the server must also specify 'not in effect'.

Note 7 Deleted.
Rules for negotiation of resultCount parameter in Sort Response are as follows:

If the client sets bit 8 (proposing that it wishes to initiate Sort operations) then it may
also set bit 16 indicating that it supports the resultCount parameter in the response.

The client must not set bit 16 if it does not set bit 8.

If the client does not set bit 16, then the server must not set bit 16 under any
circumstance.

If the client sets bit 8 and not bit 16, and if the server sets bit 8, accepting the
proposal that Sort operations may be submitted (the server must not set bit 16 as
noted above), the server must not include the resultCount parameter in a Sort
response.

If the client sets bits 8 and 16, and the server also sets bits 8 and 16, the server may
include the resultCount parameter in Sort responses. However, the server, by setting
bit 16, does not obligate itself to supplying the resultCount parameter.

If the client sets bits 8 and 16, and the server sets bit 8 but not bit 16, the server
indicates that it will accept Sort requests, but will not include the resultCount
parameter in a Sort response.

When the client sets the "negotiation model" option bit, it signifies adherence to the
negotiation model. If the client and server both set the option bit (in the InitRequest and
Response respectively) both may assume that negotiation is carried out in accordance
with the model.

If the client sets this option bit and the server does not, the client should assume that
negotiation has not been carried out in accordance with the model.

If the client does not set this option bit, but the server requires that negotiation be carried
out in accordance with this model, the server may reject the Z-association and supply
diagnostic 1055: "negotiation option required".

An option bit corresponding to the negotiation model is necessary for this reason.
Suppose a server is unaware of the negotiation model and suppose further that that
server routinely echos in the InitResponse all of the information supplied in the
InitRequest. This behavior may lead the client to believe (falsely) that negotiation has
been carried out. However, because the server is unaware of the negotiation model, it will
not set that bit, and so the client will know that the negotiation model is not in effect.

When the client sets the "query type 104" bit it proposes to submit queries of type 104. If
the server also sets this bit, then it will accept queries of type 104 -- this means the server
will not consider it to be a protocol error if the client submits a type 104 query; it does not
mean that the server agrees to support any specific external query-definition.

If this option is negotiated, then in the event that the PeriodicQuery Extended Service is

ONISO Page 20

ANSI/NISO Z39.50-2003

used, the definition in this standard will be in effect; otherwise the definition in Z39.50-
1995 will be in effect:

databaseNames must not occur in ClientPartToKeep if option bit 20 is set,
databaseNames must not occur in ClientPartNotToKeep unless option bit 20 is set,

additionalSearchinfo must not occur in ClientPartNotToKeep unless option bit 20 is
set,

databaseNames must occur in ServerPart if bit 20 is set and must not occur if option
bit 20 is not set,

lastQueryTime and lastResultNumber are optional if bit 20 is set and mandatory
otherwise,

additionalSearchinfo must not occur in ServerPart unless bit 20 is set.

12. If this option is negotiated, then Schema within Specification (in the ASN.1 APDU
definitions) is defined as in this version of the standard, that is it may take on the additional
choice of a string. Otherwise it must be an object identifier.

3.2.1.1.4 Preferred-message-size and Exceptional-record-size

The Init request contains the client's proposed values of Preferred-message-size and
Exceptional-record-size, specified in bytes. The Init response contains the Preferred-message-
size and Exceptional-record-size that the server is going to use; these may be different from (and
override) the values proposed by the client. For both the request and response, Preferred-
message-size must be less than or equal to Exceptional-record-size.

Exceptional-record-size is meaningful during a Present operation, and only in the special case
when a single, exceptionally large record (i.e. larger than preferred-message-size) is requested in
the Present request. In this special case, preferred-message-size may be overridden (for the
present operation), so that a single record may be presented whose size may be as large as
Exceptional-record-size. The fact that a single record is requested is how the client signals that
preferred-message-size may be overridden. Thus Exceptional-record-size must be greater than
or equal to preferred-message-size. In the case where they are equal, Exceptional-record-size
has no meaning (this is the way to signify that the special case will not apply during the
Z-association).

If the client supplies values of zero for both parameters, then the client is explicitly indicating "no
preference”. If the server responds with zero for both parameters (regardless of what the client
proposed), the server is indicating that the client must be prepared to accept arbitrarily large
records and arbitrarily large messages.

Note that "message size", as in Preferred-message-size, etc., means the sum of the sizes (in
bytes) of the response records (retrieval and diagnostic records) in the Present or Search
Response APDU. As a practical matter this standard does not prescribe that message sizes be
strictly enforced; thus if the negotiated Preferred-message-size is 32767, the server does not
need to ensure that the message size does not exceed that value, but rather that it not exceed it
substantially. Moreover, message size is the sum of the sizes of the records not including
protocol control information. However, this standard does not attempt to distinguish what is
protocol control information versus record content. Thus, if the server thinks it sent 32,767 bytes,
but the client thinks it sent 32,770 bytes (because the server considered something to be data
that the client thought was protocol control information) the server complies in spirit, and the client

ONISO Page 21

ANSI/NISO Z39.50-2003

should be forgiving and not consider this to be a protocol error. It is recommended that the client
propose a value of Preferred-message-size that is less than the actual limit that the client can
support.

The use of these parameters is detailed in 3.3.

3.2.1.1.5 Result

The server indicates whether or not it accepts the Z-association by specifying a value of ‘accept’
or 'reject' in the parameter Result. (If 'reject' is indicated, the client may send another Init request.)

3.2.1.1.6 Implementation-id, Implementation-name, and Implementation-version

The request or response may optionally include any of these three parameters. They are,
respectively, an identifier (unique within the client or server system), descriptive name, and
descriptive version, for the client or server implementation. These three implementation
parameters are provided solely for the convenience of implementers, for the purpose of
distinguishing implementations.

3.2.1.1.7 User-information-field

This parameter may be used by the client or server for additional information not specified by this
standard.

3.2.1.1.8 Other-information

This parameter may be used by the client or server for additional information not specified by the
standard. This parameter may be used only if version 3 is in force.

Note: The use of Other-information during initialization (i.e. within the Init request or response,
but particularly in the request) is not recommended, because of the uncertainty of what protocol
version, 2 or 3, is in force during initialization See Appendix USR (USR.2 Use of Init Parameters
for User Information).

3.2.1.1.9 Reference-id
See 3.4.

3.2.2 Search Facility

The Search facility consists of the single service, Search.

3.2.2.1 Search Service

The Search service enables a client to specify a query to be applied to databases at a server
system, and to receive information about the results of the query.

The search request allows the client to request that the server apply a query to a specified set of
databases at the server, to identify records with the properties indicated by the query. The server

ONISO Page 22

ANSI/NISO Z39.50-2003

creates a result set, which represents the set of records identified by the query. The result set is
an ordered set; a record identified by an entry in the result set is referenced by the position of the
entry within the result set (beginning with 1). The server maintains the result set for subsequent

retrieval requests.

Depending on the parameters of the search, one or more records identified by the result set may

be immediately retrieved as part of the search response. (This is referred to informally as

“piggybacking”. Retrieval is in general a function of the Present service but in special cases may
be carried out as part of the Search operation.)

Parameters of the Search Service

Parameter Name Client Request Server Response | Reference
Query-type m 3.221.1
Query m 32211
Database-names m 3.2.2.1.2
Result-set-name m 3.2.2.1.3
Replace-indicator m 3.2.2.1.3
Small-set-element-set-names 0 3.2214
Medium-set-element-set-names 0 32214
Preferred-record-syntax 0 3.2.2.15
Small-set-upper-bound m 3.2.2.1.6
Large-set-lower-bound m 3.2.2.1.6
Medium-set-present-number m 3.2.2.16
Response-records ia 3.2.2.1.7
Result-count m 3.2.2.1.8
Number-of-records-returned m 3.2.2.1.9
Next-result-set-position m 3.2.2.1.10
Search-status m 3.2.2.1.11
Result-set-status ia 322111
Present-status ia 3.22.1.11
Additional-search-information 0 0 3.2.2.1.12
Other-information 0 0 3.2.2.1.13
Reference-id 0 ia 3.4

3.2.2.1.1 Query-type and Query

The parameter Query-type identifies the type of query, i.e. the syntax of parameter Query. Six

types are defined:

Type-0 may be used only when the client and server have a priori agreement outside of the

standard.

Type-1 is the Reverse Polish Notation (RPN) query (so-called because RPN is sometimes

ONISO

Page 23

ANSI/NISO Z39.50-2003

used as an abstract representation; note however that RPN is not used as an encoding of the
Type-1 query). It is specified in 3.7.

Type-2 is the ISO8777 type query, specified in ISO 8777.

Type-100 is the Common Command Language query; its syntax is not specified by this
standard.

Type-101 is the extended RPN (ERPN) query; an extension to the type-1 query to allow
proximity searching and restriction of result sets by attributes. It is specified in 3.7.

Note: The type-101 query is identical to the type-1 query with the following exception: For
type-1, proximity and restriction are valid only when version 3 is in force. For type-101,
proximity and restriction are valid both for version 3 and version 2 as well. (The definition of
the type-101 query is independent of version.)

Type-102 is the Ranked List query, to be defined in a later version of this standard.
Type-104 is used to identify externally defined queries.

3.2.2.1.2 Database-names

The client indicates the set of databases to which the Query applies.

Notes:

1. Database Combinations. The server designates (through the Explain facility or
through some mechanism outside of the standard) what databases may be
specified on a Search request, and in what combinations they may be specified.
For example, a server might specify that databases A, B, and C, may be
searched individually, and that A and B may be searched in combination (but not
A and C, nor B and C).

2. Multi-database Searching. Z39.50 allows but does not require support for,
multi-database searching in a single Search request. A client may simply choose
not to send Search requests that list more than a single database. A server, upon
receipt of a multi-database search request may simply fail the search (diagnostic
111: "Too many databases specified”; with an addinfo "maximum value" 1
supplied). A server that chooses to support multi-database search request, may
limit such support to any specific combinations it chooses. For example suppose
a server provides 100 databases, named "1", "2", ..., "100". It may declare that
each database may be searched singly, and databases "1" and "2" may be
searched together. (It may declare this via Explain, or, more dynamically, when it
receives a search with an unsupported combination of databases, it may fail the
search with diagnostic 23: "Specified combination of databases not supported".)
A server may define virtual databases corresponding to supported combinations
rather than support multi-database search requests. For example, suppose there
are 3 real databases (A, B, and C) to which a server will allow access in all
possible combinations; the server might expose 7 virtual databases (A, B, C, AB,
AC, BC, and ABC), thus in effect providing all possible combinations but allowing
only a single (virtual) database to be specified in a Search request.

3. No Default Database. There is no defined concept in Z39.50 of a “default”
database. If a server considers a particular database to be the default database,
it could express that fact via Explain (using the “description” field of
Databaselnfo) however that information would be for human consumption only.

4. Case Insensitive. Each database name specified by the server is a string of

ONISO Page 24

ANSI/NISO Z39.50-2003

characters, and the string is case-insensitive. Thus for any character that is a
letter, the client may use either upper or lower case, regardless of how the server
has specified the name.

3.2.2.1.3 Result-set-name and Replace-indicator

The parameter Result-set-name specifies a name to be given to the result set (to be created by
the query) so that it may be subsequently referenced (within the same Z-association).

If a result set with the same name already exists at the server, the action taken depends on the
value of the parameter Replace-indicator, as follows:

If the value of Replace-indicator is 'on," then after processing the query, the existing result set
whose name is specified by the parameter Result-set-name will be deleted, and a new result
set by that name created. If the search cannot be processed, the content of the result set will
be empty.

If the value of Replace-indicator is 'off,' the search is not processed, an error diagnostic is
returned by the server, and the existing result set whose name is specified by the parameter
Result-set-name is left unchanged.

If a result set does not exist with the name specified by the parameter Result-set-name, then a
result set by that name is created by the server, and the parameter Replace-indicator is ignored.
The initial content of the result set is empty. If no records are found by the query, the result set
remains empty.

A server need not support, in general, the naming of result sets by the client (see Notes below.).
However, a server must support at least the result set whose name is "default.” If the client
specifies "default" as Result-set-name, then Replace-indicator must be 'on'.

A result set created by a Search request (that is, specified by the parameter Result-set-name)
may be referenced in a subsequent Present request or as an operand in a subsequent Search
request (for example, in a type-1 query). If a result set named "default” is created, it remains
available for reference from the time it is created until the end of the Z-association during which it
is created, or until either:

Another default result set is created, because the name "default" is specified as Result-set-
name in a subsequent Search request

It is unilaterally erased or deleted by the server
Any result set other than the result set named "default" remains available for reference from the
time it is created until it is deleted in one of the following ways:

By a Delete operation

Implicitly, because a result set was specified by the same name in a Search request, and the
value of the parameter Replace-indicator was 'on’

Unilaterally by the server (at any time)
By termination of the Z-association

Notes:

1. A server need not support, in general, the naming of result sets by the client. The server
may always choose to:

ONISO Page 25

ANSI/NISO Z39.50-2003

(a) Fail the search, supplying diagnostic 22 (Result set naming not supported).

Alternatively, in certain circumstances (detailed below) the server may (but need
not):

(b) Treat the condition as a protocol error: issues a Close, with Close-reason
‘protocol error’, if version 3 is in effect, or terminate the connection if version 2 is
in effect.

Result set naming is a negotiated feature in thus a server who doesn't support it
should so inform the client during initialization (via option bit 14). If so, then a
subsequent attempt by the client to name a result set (i.e. assign a name other
than 'default’) may be construed by the server to constitute a protocol error.

However the mechanism, by which the server informs the client that result set
naming is not suported, is not reliable unless either version 3 is in effect or if the
client sets bit 14 during initialization (implicitly acknowledging that it knows the
meaning of this option bit). Z39.50-1992 did not define this option bit, so by 1992
interpretation, the condition is not a protocol error. If version 2 is in force, the
client may have implemented Z239.50-1992. If version 3 is in force, the server
may be sure that the client has implemented 239.50-1995 or later.

In general, the server may always choose behavior (a) above, and more
specifically: If version 2 is in force, and if the client did not attempt during
initialization to negotiate result set naming (via option bit 14), the server should
choose behavior (a). If version 2 is in force, but the client did attempt during
initialization to negotiate result set naming, and the server rejected that option,
the server may choose (a) but may alternatively choose (b).

If version 3 is in force, and the server had set bit 14 off indicating that result set
naming is not supported (regardless of whether the client set bit 14), then
similarly, the server may choose (a) but may alternatively choose (b).

2. Result set names are case sensitive. This is in contrast to database names, which are
case-insensitive (see 3.2.2.1.2 Database-names note 4). Database names are passed
around outside of the protocol, often by humans, and transcend Z-associations. Result
set names have none of these characteristics; they are referred to only by the client (the
mapping between user specified names and actual result set names used in the protocol
are not within the scope of the Z39.50 protocol), within a Z-association, and the client is
expected to use a given result set name consistently within a Z-association. (Element set
names are case-insensitive; see 3.6.2.)

3.2.2.1.4 Small-set-element-set-names and Medium-set-element-set-names

These parameters describe the preferred composition of the records expected in the search
response (see 3.2.2.1.6). If the query results in a small-set then Small-set-element-set-names
pertains. If the query results in a medium-set, then Medium-set-element-set-names pertains.

3.2.2.1.5 Preferred-record-syntax

The client may specify a preferred record syntax for retrieval records.

See 3.2.3.1.5.

ONISO Page 26

ANSI/NISO Z39.50-2003

3.2.2.1.6 Small-set-upper-bound, Large-set-lower-bound, and Medium-set-present-
number

The result set is considered a "small-set," "medium-set," or "large-set," depending on the values
of parameters Small-set-upper-bound and Large-set-lower-bound of the Search request, and
Result-count of the Search response (see 3.2.2.1.8). The result set is a small-set if Result-count
is not greater than small-set-upper-bound. The result set is a large-set if Result-count is larger
than or equal to Large-set-lower-bound. Otherwise, the result set is a medium-set. If the query
results in a small-set, response records corresponding to all database records identified by the
result set are to be returned to the client (subject to possible message size constraints). If the
query results in a large-set, no response records are to be returned. If the query results in a
medium-set, the maximum number of response records to be returned is specified by
Medium-set-present-number.

Notes:

1. The result set may be a medium-set only when Result-count is greater than small-set-
upper-bound and less than Large-set-lower-bound, and this can occur only if Large-set-
lower-bound is at least 2 greater than Small-set-upper-bound; i.e. the result set cannot be
a medium-set if Large-set-lower-bound exceeds Small-set-upper-bound by 1. For
example, if Large-set-lower-bound is 11 and Small-set-upper-bound is 10, the intent is "if
10 or less database records are found, return response records for them all, otherwise do
not return any," and medium-set-present-number would not apply.

2. Small-set-upper-bound may be zero. Large-set-lower-bound must be greater than Small-
set-upper-bound.

3. If the client does not want any response records returned regardless of the value of
Result-count, Large-set-lower-bound should be set to 1 and Small-set-upper-bound to
zero.

3.2.2.1.7 Response-records

The server processes the search, creating a result set that identifies a set of database records. It
cannot be assumed however that search processing requires physical access to the database
records. A particular database record might not be accessible but this circumstance might not be
recognized until an attempt is made to access the record for the purpose of forming a retrieval
record.

After processing the search, the server attempts to create retrieval records to be included in the
Search response, corresponding to the first N database records identified by the result set (N
depends on the request parameters and Result-count, as described in 3.2.2.1.6). For each
database record for which a retrieval record cannot be included, a surrogate diagnostic record is
substituted.

The term response record refers to a retrieval record or a surrogate diagnostic record. The
parameter Response-records is one of the following:

N response records

A number of response records, which is less than N because of message size constraints
(see 3.3)

One or more non-surrogate diagnostic records (see note) indicating that the search cannot be
processed, and why it cannot be processed

ONISO Page 27

ANSI/NISO Z39.50-2003

One or more non-surrogate diagnostic records (see note) indicating that records cannot be
presented, and why not, e.g. "element set name not valid for database"

Note: If version 2 is in force, the server returns a single non-surrogate diagnostic record. If
version 3 is in force, the server returns one or more non-surrogate diagnostic records.

The order of occurrence of response records within the parameter Response-records is according
to the order in which they are identified by the result set. Each may optionally be accompanied by
the name of the database in which the record resides. However, the database name must
accompany the first response record being returned, and must accompany any record from a
database different from its immediate predecessor. The database name appended to a record
need not be one of the database names that was included in the original search request (the
request that caused the creation of the result set from which the record is being presented).

When Server Does Not Support Response Records in a Search Response

If a server does not support “piggybacking”, i.e. supplying response records in a Search
response, and when the Search request parameter values for small-set-upper-bound and
large-set-lower-bound and the Search response parameter value for Result-count are such that
the response is expected to include one or more records as specified in 3.2.2.1.7 (for example, if
a search results in 5 records and small-set-upper-bound on the search request was 10, the server
is expected to attempt to return all five records), the server should respond with a Search-status
of 'success' and a Present-status of ‘failure’, and include a non-surrogate-diagnostic, for example
General Diagnostic “1005: Response records in Search response not supported”, or “1006:
Response records in Search response not possible for specified database or database
combination”.

Note that Diagnostic 1006 is intended for the case of an intermediary providing access to multiple
servers, some of which may support piggybacking and some which do not, and is for the
intermediary to use in case the particular end server does not support piggybacking, to
distinguish from the case where the intermediary itself does not support piggybacking.

When Query is not supported for a Database

When the query is not supported for one of the databases (that is, when there is at least one
database listed by the Client in the Database-names parameter, 3.2.2.1.2, for which the query is
not supported, even though the query may be supported for other listed databases), the server
should set 'search-status' to ‘failure’, and supply an appropriate diagnostic. (For example, when
an attribute is not supported for a database, supply diagnostic 1056: "Attribute not supported for
database". Multiple instances of diagnostic 1056 may be supplied for multiple attribute/database
combinations.)

When a query is supported for one or more but not all of the databases, and if the server wishes
to make the result set available to the client (the result set produced by applying the query to the
subset of supported databases) the server may set Search-status to ‘failure’ and
Result-set-status to ‘subset: partial, valid results available’. The reasoning for this prescribed
behavior is as follows. Setting Search-status to 'success' would give the client the false
impression that the search was executed across all of the databases. For those databases for
which the query is not supported, the client would be led to believe instead that the query is
indeed supported and that no records were found. But while a status of 'success' is misleading
when part of the search fails, 'failure’, too, is misleading when part of the search succeeds. Thus
the parameter Result-set-status helps disambiguate a 'failure’ status. Furthermore,

ONISO Page 28

ANSI/NISO Z39.50-2003

Result-set-status may be supplied only when Search-status is 'failure'. Thus, setting status to
'failure’ is prescribed, not because of any implied semantics of a failure status but (more
pragmatically) because it provides the client with access to the result set.

3.2.2.1.8 Result-count and Number-of-records-returned
The parameter Result-count is the number of database records identified by the result set. If the
result set is empty, result-count is zero.

A negative value for resultCount in a Search Response is invalid and constitutes a protocol
violation. A client that receives a negative value of Result-count may treat this as a protocol error
(if version 3 is in force, may issue a Close Request with Close-reason ‘protocol error’).

The parameter Number-of-records-returned is the total number of records returned in the Search
response, including diagnostic records, surrogate or non-surrogate.

3.2.2.1.9 Next-result-set-position

The parameter Next-result-set-position takes on the value M+1, where M is the position of the
result set item which identifies the database record corresponding to the last response record
among those returned; or zero if M = Result-count.

3.2.2.1.10 Search-status

The parameter Search-status, returned in the response, assumes one of the following two values:
Success The search completed successfully.

Failure The search did not complete successfully.

A value of 'success' does not imply that the expected response records are being returned as part
of the response (see Present-status, 3.2.2.1.11). Note also, a value of 'success' does not imply
that any database records were located by the search. A value of 'failure' does imply that none of

the expected response records is being returned. In the latter case, the server returns one or
more non-surrogate diagnostic records (see note) indicating that the search cannot be processed.

Note: If version 2 is in force, the server returns a single non-surrogate diagnostic record. If
version 3 is in force, the server returns one or more non-surrogate diagnostic records.

3.2.2.1.11 Result-set-status and Present-status

These are status descriptors necessary to distinguish potentially ambiguous situations that can
occur during search and present operations.

Result-set-status occurs if and only if the value of Search-status is 'failure," and its value is one of
the following:

Subset Partial, valid results available.
Interim Partial results available, not necessarily valid.
None No result set.

ONISO Page 29

ANSI/NISO Z39.50-2003

Present-status occurs if and only if the value of Search-status is 'success," and its value is one of

the following:

Success All of the expected response records are available. See
note 1.

Partial-1 Not all of the expected response records can be
returned because the request was terminated by access
control.

Partial-2 Not all of the expected response records can be
returned because they will not fit within the preferred
message size.

Partial-3 Not all of the expected response records can be
returned because the request was terminated by
resource control, at client request. See note 2.

Partial-4 Not all of the expected response records can be
returned because the request was terminated by
resource control, by the server. See Note 3.

Failure None of the expected response records can be returned.
One or more non-surrogate diagnostic records are
returned (see note in 3.2.2.1.7).

Notes:

1. In the case where the Search Request specified Small-set-upper-bound = 0 and

Large-set-lower-bound = 1 (i.e. don't present records under any circumstances) and
where Search-status = 'success'; Present-status (which must be supplied, since
Present-status must occur if Search-status is 'success') should be 'success', where in this
case “success” may be interpreted to mean "you asked for no records, and no records
were sent, so therefore consider the disposition of the Present part of the request to be
successful".

If partial-3 is indicated, this implies that either (1) the server sent a resource control
request to which the client responded "do not continue”, or (2) the client issued a
TriggerResourceControl request to terminate the operation. This means that either
Resource Control or Trigger Resource control (for cases 1 and 2 respectively) must have
been negotiated.

Partial-4 may be indicated when the server simply terminates the operation, unilaterally,
perhaps because resources at the server are limited (but not as a result of a
Resource-control response indicating "do not continue".) Partial-4 does not require that
resource control be negotiated.

Notes Pertaining to the Relationship among Search-Status, Present-Status, and Result-
Set-Status

Informally, in a Z39.50 Search operation, the client supplies search criteria and requests the
server to:

@)
(b)

Identify records that meet the criteria
Report the number of records identified

ONISO Page 30

ANSI/NISO Z39.50-2003

(c) Establish a result set corresponding to those records (see note 1)

(d) (Conditionally) return some or all of the records (see note 3)

Notes:

1. If no records were identified (see note 2), the server might not physically create a result
set, but in the abstract, an empty result set is assumed to have been created.

2. The qualification "no records were identified" means that the server performed the search

and is stating that "there are no records meeting the criteria”; it does not mean the server
was unable to determine the number (in which case the server should fail the search).

3. The number of records returned, which may be zero, depends on the result count and the
values of the Search Request parameters Small-set-upper-bound,
Large-set-lower-bound, and Medium-set-present-number.

The search operation consists of a search phase and a retrieval phase, where (a), (b), and (c)
correspond to the search phase and (d) to the retrieval phase. The search is considered to
succeed if and only if the server is able to perform (a), (b), and (c).

Thus if a search results in the identification of zero records (that is, the server determines that no
records meet the criteria), this does not constitute failure. (In Z39.50, "search" does not so much
connote "locate", as in the classical usage of the term "search”, as it means "identify how many
and which items meet specified criteria”. "None" is a valid answer to "how many", and in that
case, the "which" part does not apply.) The search-status values of 'success' and ‘failure'
correspond respectively to whether the search succeeds or not.

When the search succeeds, a result set is created. If the search fails, a result set may or may not
be created, and its existence may be determined by the value of Result-set-status (see table
below). Result-set-status occurs if and only if the search fails; if the search succeeds, the
existence of the result set is implicitly known (it exists) and therefore the parameter is not
necessary.

There is a retrieval phase if and only if the search succeeds, and if so, the response parameter
Present-status occurs.

Therefore exactly one of the parameters Result-set-status and Present-status occurs in the
response. Result-set-status corresponds to a search that fails, and Present-status to a search
that succeeds.

Present-status has values of 'success' or ‘failure’, similar to Search-status (though, in contrast,
Present-status has additional intermediate statuses as well). 'Success' means that the server
presented all of the response records (retrieval or surrogate diagnostic records) that it attempted
to present; ‘failure’ means that it was unable to present any of the records (cases where the
server presents some, but not all, are covered by the intermediate statuses).

Whenever either Search-status or Present-status is ‘failure’, the server must provide one or more
non-surrogate diagnostics, supplying diagnostic information associated with the failure.

The following table summarizes the relationship among the statuses, the presence of
non-surrogate diagnostics, and the existence of a result set.

ONISO Page 31

ANSI/NISO Z39.50-2003

If Search |And Present Then Result [And a Non-surrogate |And a Result Set:
Status is: [Status is: Set Status: Diagnostic:
‘success’ ‘success’ (or Must not occur Must not be supplied Exists
‘partial’)
‘success’ failure’ Must not occur Must be supplied (at Exists
least one)
failure’ (Present Status Must occur Must be supplied (at Exists if result-set-status
must not occur) least one) is ‘subset’ or 'interim’;
Does not exist if 'none'.

3.2.2.1.12 Additional-search-information

On the response the server may use this parameter to convey information, which is a by-product
of the search process, including, for example, intermediate result counts, why particular records
were returned, or whether a particular attribute was used for searching a database. On the
request the client may use this parameter to indicate the preferred format or content of that
information. User Information format SearchResponse-1 is defined in Appendix USR. This
parameter may be used only when version 3 is in force.

3.2.2.1.13 Other-information

This parameter may be used by either the client or server for additional information not specified
by the standard. This parameter may be used only when version 3 is in force.

3.2.2.1.14 Reference-id
See 3.4.

3.2.3 Retrieval Facility

The Retrieval facility consists of two services: Present and Segment.

The client sends a Present request-to-request response records according to position within a
result set maintained by the server. The server responds by sending a Present response,
containing the requested response records. Alternatively, if segmentation is in effect and the
requested response records will not fit within the Present response message, the server may
segment the response by sending one or more Segment requests before the Present response.
The procedures for segmentation are described in 3.3.

The Segment requests (if any) together with the Present response are referred to as the
agagregate Present response. Each Segment request as well as the Present response is referred
to as a segment of the Present response. If an aggregate Present response consists of a single
segment (i.e. only a Present response) it is called a simple Present response.

3.2.3.1 Present Service

The Present service allows the client to request response records corresponding to database
records represented by a specified result set. Database records are referenced by relative

ONISO Page 32

ANSI/NISO Z39.50-2003

position within the result set. The client specifies a range and may follow with subsequent
requests specifying different ranges.

Note: If version 3 is in force, a single request may include more than one range.

The client may request, for example, records one through five and follow with a request for
records four through six.

Note: In this section, "record N” means "the response record corresponding to the database
record identified by result set entry N."

Parameters of the Present Service

Parameter Name Client Request | Server Reference
Response

Number-of-records- requested m 3.23.11
Result-set-start-position m 3.23.1.1
Additional-ranges 0 3.23.1.2
Result-set-id m 3.2.3.1.3
Element-set-names 0 32314
Preferred-record-syntax 0 3.2.3.15
Comp-spec 0 3.2.3.1.6
Max-segment-count 0 3.2.3.1.7
Max-segment-size 0 3.23.1.7
Max-record-size 0 3.2.3.1.7
Response-records ia 3.2.3.18
Number-of-records- returned m 3.2.3.1.9
Next-result-set-position m 3.2.3.1.9
Present-status m 3.2.3.1.10
Other-information 0 0 3.23.1.11
Reference-id 0 ia 3.4

3.2.3.1.1 Number-of-records-requested and Result-set-start-position

The client requests a range of records: N records beginning at record M. M = Result-
set-start-position, N = Number-of-records-requested.

Note: The 1995 version of this standard assumed that the client always know the size of (i.e.
number of records in) the result set, and therefore considered it to be a protocol error if N is
greater than (Result-count - M) + 1; that is, if the range requested includes records whose ordinal
result set position would exceed the number of items in the result set (for example, requesting
result set records 7 through 10 when there are only 8 records in the result set). However, if
version 3 is in effect, this need not be considered a protocol error, because the client might not
always be expected to know the size of the result set (for example when the result set is sorted,

ONISO Page 33

ANSI/NISO Z39.50-2003

or de-duplication is performed, or the result set is a re-activated persistent result set). The server
may chose to treat it as a protocol error (and may issue a non-surrogate diagnostic, such as
diagnostic 13) or may honor the request and supply a surrogate diagnostics for each of the non-
existent records (and similarly, diagnostic 13 may be used as a surrogate diagnostic). Note
however, if version 2 is in effect, then this condition must be treated as a protocol error.

3.2.3.1.2 Additional-ranges

The client may request additional ranges of records by including this parameter, which consists of
one or more pairs (M, N) where M and N are as described in 3.2.3.1.1. For the first pair (M, N) M
must be greater than or equal the sum of Result-set-start-position and
Number-of-records-requested. For any consecutive pairs (M1, N1) and (M2, N2), M1 + N1 must
be less than M2. This parameter may occur only when version 3 is in force.

If the client includes this parameter and the server does not support Additional-ranges, it should
fail the Present (Present-status of 'failure’ with a non-surrogate diagnostic 243).

3.2.3.1.3 Result-set-id

The client indicates the name of a transient result set, created during this Z-association, from
which records are to be retrieved.

3.2.3.1.4 Element-set-names

The client may indicate the desired composition of the retrieved records. See 3.6.2.

3.2.3.1.5 Preferred-record-syntax

The client may specify a preferred record syntax for retrieval records.

3.2.3.1.6 Comp-spec

This parameter may be included only if the parameter Element-set-names is omitted, and only if
version 3 is in force. If included, Comp-spec provides an alternative means of specifying the
desired composition of retrieved records. See 3.6.

3.2.3.1.7 Max-segment-count, Max-segment-size, and Max-record-size

These three parameters may be used only when version 3 is in force.

Max-segment-count may be included when level-1 or level-2 segmentation is in effect; it specifies
the maximum number of segments the server may include in the aggregate Present response. If
its value is 1, no segmentation is applied for the operation and Max-record-size should not be
included.

Max-segment-size and/or Max-record-size may be included only when level 2 segmentation is in
effect. Max-segment-size is the largest allowable segment; if included, it overrides Preferred-
message-size (for this Present operation only); if not included it assumes the value of Preferred-
message-size. Max-record-size is the largest allowable retrieval record within the aggregate
Present response; if included, it must equal or exceed Max-segment-size.

ONISO Page 34

ANSI/NISO Z39.50-2003

These three parameters are further detailed in 3.3.3.2.

3.2.3.1.8 Response-records

This parameter consists of a sequence of response records, or possibly, if 'level 2 segmentation'
is in effect, a final fragment (see 3.3.3) followed by zero or more response records. Alternatively
(if the operation included no Segment requests) the parameter consists of one or more non-
surrogate diagnostic records indicating that the request cannot be processed, and why not (see
note below).

A response record will be returned in the aggregate Present response for each record requested
in the request (subject to message size, access-control, and resource-control constraints). Each
response record corresponds to a result set entry, and the result set ordinal positions represented
by the response records will be ascending and consecutive, unless the request included the
parameter Additional-ranges. In this case, the positions will be ascending but may have gaps,
which will correspond, exactly to the gaps in the requested ranges.

Each response record may optionally be accompanied by the name of the database to which it
corresponds. However, the database name must accompany the first response record (or starting
fragment) within the first segment of the aggregate Present response, and must accompany any
response record (or starting fragment of a response record) from a database different from its
immediate predecessor within the aggregate Present response.

When the client has received the aggregate Present response, the result (if all of the segments
are re-assembled, and segmented response records re-assembled from their fragments) will be
one of the following:

N response records, where N = Number-of-records-requested

A number of response records, which is less than N (reason specified by Present-status)

One or more diagnostic records (see note) indicating that the request cannot be processed,
and why not.

Note: If version 2 is in force, the server returns a single non-surrogate diagnostic record. If
version 3 is in force, the server returns one or more non-surrogate diagnostic records.

3.2.3.1.9 Number-of-records-returned and Next-result-set-position

The parameter Number-of-records-returned is the total number of records in the aggregate
Present response. Next-result-set-position is the value M+1, where M is the position of the result
set item corresponding to the last record among those included in the response; or zero if M is
the position of the last result set item.

3.2.3.1.10 Present-status

Present-status is mandatory in a Present response and its values are the same as those listed for
Present-status in 3.2.2.1.11. Present-status refers to the aggregate Present response.

ONISO Page 35

ANSI/NISO Z39.50-2003

3.2.3.1.11 Other-information

This parameter may be used by the client or server for additional information, not specified by the
standard. This parameter may be used only if version 3 is in force.

3.2.3.1.12 Reference-id
See 3.4.

3.2.3.2 Segment Service

If the records requested by a Present request will not fit in a single segment, and if segmentation
is in effect, the server returns multiple segments, each of which contains a portion of the records.
Each except the last segment is returned as a Segment request (the last segment is returned as
a Present response).

Notes:
1.

The segment service is modeled as a request, even though, logically, the server is not
making a request. The reason is that (for purposes of abstract service definition and
resultant protocol specification) any message is a request or a response, a response
must be preceded by a request of the same type, and there may be at most one
response to a given request. Because of these modeling constraints: the Segment
service cannot be modeled as a response (because if it were, it would necessarily
respond to a segment request, and it is a non-confirmed service); and the present
operation cannot be modeled as a Present request followed by multiple Present
responses.

This service may be used only when version 3 is in force.

If segmentation is not in effect, the server does not send any Segment requests and the
aggregate Present response consists of a simple Present response. If the records
requested will not fit in a segment, the procedures described in 3.3.1 apply.

If the records requested will fit in a single segment (whether or not segmentation is in
effect) the server does not send any Segment requests and the aggregate Present
response consists of a simple Present response.

Parameters of the Segment Service

Parameter Name Server Request Reference

Segment-records m 3.2321

Number-of-records-returned m 3.23.2.2

Other-information 0 3.2.3.2.3

Reference-id ia 3.4

3.2.3.2.1 Segment-records

If level 1 segmentation is in effect, the parameter Segment-records consists of a sequence of
response records.

ONISO Page 36

ANSI/NISO Z39.50-2003

If level 2 segmentation is in effect, the parameter Segment-records may include response records
as well as fragments (see 3.3.3). It may be composed of a final fragment (except within the first
segment of the aggregate Present response), followed by zero or more response records,
followed by a starting fragment. Neither fragment need occur, however if neither occurs there
must be at least one response record. (Note that fragments pertain only to retrieval records; a
diagnostic record may not be segmented.)

The order of occurrence of a response record or fragment of a retrieval record is according to the
order in which the record is identified by the result set. Each response record or starting fragment
may optionally be accompanied by the name of the database to which it pertains. However, the
database name must accompany the first response record (or starting fragment) within the first
segment of the aggregate Present response, and must accompany any response record (or
starting fragment of a retrieval record) from a database different from its immediate predecessor
within the aggregate Present response.

3.2.3.2.2 Number-of-records-returned

This is the total number of response records and starting fragments included within the segment.

3.2.3.2.3 Other-information

This parameter may be used by the server for additional information, not specified by the
standard.

3.2.3.2.4 Reference-id
See 3.4.

3.2.4 Result-set-delete Facility

The Result-set-delete facility consists of a single service, Delete.

3.2.4.1 Delete Service

The Delete service enables a client to request that the server delete specified result sets, or all
result sets, created during the Z-association. The server responds by reporting information
pertaining to the result of the operation.

Although a result set is deleted automatically after the Z-association is closed. A client may wish
to delete a result set explicitly during the Z-association. A server might have a limit to the number
of result sets it can maintain, and might unilaterally delete one or more result sets when that limit
is approached. Therefore by deleting a result set it no longer needs, a client might forestall the
possibility that a result set that it does still need may be unilaterally deleted. Moreover, some
servers charge to maintain results, so deleting a result set when it is no longer needed may help
reduce cost.

ONISO Page 37

ANSI/NISO Z39.50-2003

Parameters of the Delete Service

Parameter Name Client Request Server Reference
Response

Delete-function m 3.24.1.1
Result-set-list ia 3.24.1.2
Delete-operation-status m 3.24.1.3
Delete-list-status ia 3.24.14
Number-not-deleted ia 3.24.15
Bulk-statuses ia 3.24.15
Delete-msg ia 3.24.1.6
Other-information 0 0 3.24.1.7
Reference-id 0 ia 3.4

3.2.4.1.1 Delete-function
The client specifies one of the following:
list delete specified result sets (see 3.2.4.1.2), or

bulk-delete delete all result sets currently on the server created
during this Z-association.

3.2.4.1.2 Result-set-list

This parameter occurs if and only if Delete-function is 'list'. It contains a list of result sets (created
during this Z-association) to be deleted.

3.2.4.1.3 Delete-operation-status

Delete-operation-status is the status of the delete request. It assumes one of the values 'success'
or 'failure-3' through 'failure-9' in the table below.

3.2.4.1.4 Delete-list-statuses

Delete-list-statuses is present in a Delete response if Delete-function in the request was 'list'.
Delete-list-statuses contains the same list of result sets as in the Result-set-list parameter of the
Delete request, each paired with a status. Possible status values are 'success,' 'failure-1' through
'failure-6,' and 'failure-10'.

Status Description
success Result set(s) deleted.
failure-1 Result set did not exist.
failure-2 Result set previously unilaterally deleted by server.
failure-3 System problem at server (optional text message may be included in the Delete-msg

ONISO Page 38

ANSI/NISO Z39.50-2003

parameter).
failure-4 Access-control failure: the delete request caused the server to issue an Access-control
request, which the client failed to satisfy, or the client could not accept an Access-
control request.
failure-5 Operation terminated by resource control at client request.
failure-6 Operation terminated by server due to resource constraints.
failure-7 Bulk delete of result sets not supported by server. See Note 1.
failure-8 Not all result sets deleted (on a bulk-delete request) (see 3.2.4.1.5). See Note 1.
failure-9 Not all requested result sets deleted (on a list request).
failure-10 Result-set in use. See Note.2.
Notes:
1. Failure-7 and failure-8 can occur only if Delete-operation is Bulk-delete.
2. Failure-10 may be used only when version 3 is in force.

3.2.4.1.5 Number-not-deleted and Bulk-statuses

These two parameters occur only if Delete-function is Bulk-delete and if Delete-operation-status =
'failure-8'. The parameter Number-not-deleted indicates how many result sets were not deleted,
and the parameter Bulk-statuses gives individual statuses for those not deleted.

Note, however, that a server is not obligated to provide statuses for each result set not deleted on
a bulk delete. For example, a server may abort a bulk delete when the first failure to delete a
result set that is part of the bulk delete fails; in this case only a single status might be included in
the parameter Bulk-statuses.

If a bulk delete results in more statuses than can fit into a single Delete-response message, the
server may discard those that do not fit.

3.2.4.1.6 Delete-msg

Delete-msg, if present, contains an optional text message.

3.2.4.1.7 Other-information

This parameter may be used by either the client or server for additional information not specified
by the standard. This parameter may be used only when version 3 is in force.

3.2.4.1.8 Reference-id
See 3.4.

3.2.5 Access Control Facility

The Access Control facility consists of a single service, Access-control.

ONISO Page 39

ANSI/NISO Z39.50-2003

3.2.5.1 Access-control Service

The Access-control service allows a server to challenge a client. The challenge might pertain to a
specific operation or to the Z-association. The Access-control request/response mechanism can
be used to support access control challenges or authentication, including password challenges,
public key cryptosystems, and algorithmic authentication.

A client must be prepared to accept and respond to Access-control requests from the server if
access control is in effect. A server may issue an Access-control request which is either part of a
specific (active) operation, or which pertains to the Z-association.

If concurrent operations is in effect:

- If the Access-control request includes a Reference-id: The supplied Reference-id
must correspond to an active operation; the Access-control request is part of that
operation. The Access-control response must also include that Reference-id.

- If the Access-control request does not include a Reference-id: The Access-control
request and response are not part of any operation, they pertain to the Z-association.

If serial operations is in effect: The server may issue an Access-control request only when
there is an active operation; the Access-control request and subsequent response are part of
that operation and must include the Reference-id of the operation (which is assumed 'null’ if
not present in the initiating request).

The following procedures pertain to access control as it applies to an operation:

1.

After sending an initiating request, the client must be prepared to receive an Access-
control request (for that operation), respond with an Access-control response, then later
receive another Access-control request, etc., before receiving a terminating response.
The server might suspend processing of the operation from the time that it sends the
Access-control request until it receives the Access-control response. The challenge does
not interrupt any other operation. If the client response is acceptable to the server, the
operation proceeds as if the challenge has never taken place. If the client fails to respond
correctly to the challenge then the server's terminating response to the interrupted
operation may indicate that the operation was terminated due to an Access-control
failure.

If the client fails to respond correctly to a challenge during an Init operation, the server
may reject the Z-association (by setting the Result parameter to 'reject,’ and optionally
supplying an explanatory message in the User-information-field of the Init response).
However, the server need not necessarily reject the Z-association. For example the
server might wish to invoke a security challenge during an Init operation to determine
whether the client is authorized to use a capability it has proposed. If the client fails to
respond properly, the server may simply refuse the use of that particular operation (via
the Options parameter).

During a Search or Present operation, while the server is preparing records for
presentation, it might send an Access-control request pertaining to a particular record. If
the client fails to respond correctly to the challenge, the server may simply substitute a
surrogate diagnostic: "security challenge failed; record not included."

The following procedures pertain to access control as it applies to the Z-association:

1.

If concurrent operations is in effect, following initialization the client must be prepared at
any time during the Z-association, whether or not operations are active, to receive an

ONISO Page 40

ANSI/NISO Z39.50-2003

Access-control request pertaining to the Z-association, to respond with an Access-control
response, then later to receive another Access-control request, etc.

2. The server might suspend processing of some or all of the active operations from the
time that it sends the Access-control request until it receives the Access-control
response. If the client response is acceptable to the server, the suspended operations
proceed as if the challenge had never taken place.

3. If the client fails to respond correctly to the challenge, the server might decide to
terminate one or more operations but to leave open the Z-association. In that case, the
server's terminating response to any such operations may indicate that the operation was
terminated because of an Access control failure. Alternatively, the server may close the
Z-association.

Parameters of the Access Control Service

Parameter Name Server Request | Client Reference
Response
Security-challenge m 3.25.1.1
Security-challenge-response m 3.25.1.1
Other-information 0 0 3.25.1.2
Reference-id ia ia 3.4

3.2.5.1.1 Security-challenge and Security-challenge-response

Definitions for format and content of the challenge and response are subject to registration;
several definitions are defined in Appendix ACC. Alternatively, the contents of these two
parameters may be established by prior agreement between a given server/client pair.

3.2.5.1.2 Other-information

This parameter may be used by either the client or server for additional information not specified
by the standard. This parameter may be used only when version 3 is in force.

3.2.5.1.3 Reference-id

If serial operations is in effect, or if concurrent operations is in effect and the challenge pertains to
a particular operation, then the use of Reference-id is governed by section 3.4. If ‘concurrent
operations' is in effect and the challenge pertains to the Z-association, then the Reference-id is to
be omitted from both the request and response.

3.2.6 Accounting/Resource Control Facility
The Accounting/Resource Control facility consists of three services:

The Resource-control service, invoked by the server, either as part of an active operation (of
any type) or pertaining to the Z-association

The Trigger-resource-control service, invoked by the client as part of an active operation (of
any type except Init)

ONISO Page 41

ANSI/NISO Z39.50-2003

The Resource-report service, invoked by the client to initiate a Resource-report operation

The Resource-control service permits the server to send a Resource-control request, which might
include a resource report. The report might notify the client that either actual or predicted
resource consumption will exceed agreed upon limits (or limits built into the server), and request
the client's consent to continue an operation, via the Resource-control response. The server
might, for example, inform the client about the current status of a result set being generated on
the server during a Search operation, and indicate information about the progress of the
operation.

The Trigger-resource-control service permits the client to request that the server initiate the
Resource-control service, or cancel the operation.

The Resource-report service permits the client to request that the server send a Resource-report
pertaining to a completed operation or to the Z-association.

3.2.6.1 Resource-control Service

A client must be prepared to accept and respond to Resource-control requests from the server if
resource control is in effect. A server may issue a Resource-control request which is either part of
a specific (active) operation or which pertains to the Z-association.

If concurrent operations is in effect:

- If the Resource-control request includes a Reference-id: The supplied Reference-id
must correspond to an active operation; the Resource-control request is part of that
operation. The Resource-control response (if any) must also include that Reference-
id.

- If the Resource-control request does not include a Reference-id: The Resource-

control request and response are not part of any operation, they pertain to the Z-
association.

If serial operations is in effect: The server may issue a Resource-control request only when
there is an active operation; the Resource-control request and (possible) subsequent
response are part of that operation and must include the Reference-id of the operation (which
is assumed 'null’ if not present in the initiating request).

The Resource-control request indicates whether a response is required:

If so, the client must issue a Resource-control response. If the Resource-control request was
part of an operation: the response is part of the same operation; the server awaits the
Resource-control response, and subsequently issues a terminating response after processing
of the operation is concluded.

If not, the client must not issue a Resource-control response. If the Resource-control request
was part of an operation: the server subsequently issues the terminating response, after
processing of the operation is concluded.

A client should be prepared to receive, and (conditionally) respond to, multiple Resource-control
requests as part of an operation (while the operation is active), or pertaining to the Z-association.

If the client responds to a Resource-control request with a Resource-control response saying to
terminate an operation, it can expect to receive a terminating response. This response might

ONISO Page 42

ANSI/NISO Z39.50-2003

indicate that the operation was terminated at client request. However, the response might
alternatively indicate that the operation completed, since the operation at the server may continue
to execute and subsequently complete before the Resource-control response reaches the server.

Parameters of the Resource Control Service

Parameter Name Server Request Client Response | Reference
Resource-report 0 3.26.1.1
Partial-results-available ia 3.2.6.1.2
Suspended-flag ia 3.2.6.1.3
Response-required m 3.26.14
Triggered-request-flag 0 3.2.6.1.5
Continue-flag m 3.2.6.1.6
Result-set-wanted ia 3.2.6.1.7
Other-information 0 0 3.25.1.8
Reference-id ia ia 34

3.2.6.1.1 Resource-report

This parameter may be used to convey information about the current and estimated resource
consumption at the server. The format of Resource-report resource-1 and resource-2 are defined
in Appendix RSC.

3.2.6.1.2 Partial-results-available

The server indicates the status of the result set via the flag Partial-results-available, whose value
is one of the following:

Value of Partial-results-available Description
subset Partial, valid results available.
interim Partial results available, not
necessarily valid.
none No results available.

This parameter is meaningful only as part of a search operation. If its value is 'subset' or 'interim,’
then the server will accept subsequent Present requests against the result set if the client
indicates (via the Continue-flag) that the operation is to be terminated and if the value of the
parameter Result-set-wanted is 'on'.

If the value of Partial-results-available is 'none' then the server need not accept subsequent
Present requests in the event that the client indicates (via the Continue-flag) that the operation is
to be terminated.

Note that if the Suspended-flag is off, the partial results available situation may change because
processing of the Search operation may continue. In all cases, the values of Search-status and

ONISO Page 43

ANSI/NISO Z39.50-2003

Result-set-status in the Search response should be treated as the authoritative information.

Access to Incomplete Results

This parameter Partial-results-available may be used not only for post-search information, but
during a search as well. The server may notify the client of the availability of partial (i.e.
incomplete) results by sending a resource report that may include the name of a result set
(different from the result set specified in the Search Request) that contains the partial results, and
the client may begin retrieving records, if concurrent operations is in effect. The client may send a
trigger-resource-control request during the search, specifying the searchResult-1 format (see
Appendix USR, USR.1), and so indicate that it wants partial results.

3.2.6.1.3 Suspended-flag

This parameter is valid only when the request pertains to an operation. The server indicates
whether or not processing of the operation has been suspended pending the Resource-control
response. This flag occurs if and only if the value of Response-required is 'yes'.

3.2.6.1.4 Response-required

The server indicates whether or not a response (from the client) to this request is required.

3.6.2.1.5 Triggered-request-flag

This parameter is valid only when the request pertains to an operation. The server may optionally
indicate whether or not this request resulted from a Trigger-resource-control request from the
client.

3.2.6.1.6 Continue-flag

This parameter is valid only when the request pertains to an operation. The client indicates to the
server whether or not to continue processing the operation.

3.2.6.1.7 Result-set-wanted
This flag is valid only:

During a Search operation,
When the value of Partial-results-available is 'subset' or 'interim," and
When the value of the parameter Continue-flag is 'do not continue'.

If the value of this flag is 'yes,' the server will maintain the (possibly partial) result set for
subsequent Present operations. If the value of the flag is 'no,' the server may delete the result set.
A result set status of 'none' on the subsequent Search response indicates that the server has
discarded the result set. In all cases, the values of Search-status and Result-set-status in the
Search response describe the actual decisions made by the server and the way in which the
search terminated.

ONISO Page 44

ANSI/NISO Z39.50-2003

3.2.6.1.8 Other-information

This parameter may be used by either the client or server for additional information, not specified
by the standard. This parameter may be used only when version 3 is in force.

3.2.6.1.9 Reference-id
See 3.4.

3.2.6.2 Trigger-resource-control Service

A client may issue Trigger-resource-control requests during an operation (except during an Init
operation), as part of that operation. It serves as a signal to the server that the client wishes the
server to:

a) Simply send a Resource-report, i.e. issue a Resource-control request with Response-
required 'off";

b) Invoke full resource control, i.e. issue a Resource-control request with Response-
required 'on'; or

C) Cancel the operation.

The server is not obliged to take any specific action upon receipt of a Trigger-resource-control
request. For the purpose of procedure description, there is no response to the request; if the
server wishes to issue a Resource-control request it does so unilaterally. (If the client issues a
Trigger-resource-control request and subsequently receives a Resource-control request as part
of the same operation, the client cannot necessarily determine whether the latter resulted from
the Trigger-resource-control request. However, the server may include Triggered-request-flag in
the Resource-control-request to so indicate.)

If the client issues a Trigger-resource-control request saying to cancel the operation, and if the
server honors the request, the client can expect to receive a terminating response indicating that
the operation was terminated at client request.

Although a client may issue a Trigger-resource-control request as part of an active operation, the
server might receive the request after the operation terminates. In that case, the server will ignore
the Trigger-resource-control request. Furthermore, the server might receive a Trigger-resource-
control request after issuing a Resource-control request for the same operation, while awaiting a
Resource-control response. In that case, again, the server should ignore the Trigger-resource-
control request. (Note that in general, the server may ignore any Trigger-resource-control
request.)

Parameters of the Trigger-resource-control Service

Parameter Name Client Request Reference
Requested-action m 3.2.6.2.1
Preferred-resource-report-format ia 3.2.6.2.2
Result-set-wanted ia 3.2.6.2.3
Other-information 0 3.23.24
Reference-id ia 34

ONISO Page 45

ANSI/NISO Z39.50-2003

3.2.6.2.1 Requested-action
The client indicates one of the following:

resource-report Issue a Resource-control request and set Response-
required to 'off'

resource-control Issue a Resource-control request and set Response-
required to ‘on'

cancel Terminate the operation

3.2.6.2.2 Preferred-Resource-report-format

The client may indicate a resource report format that it prefers.

3.2.6.2.3 Result-set-wanted

This flag is meaningful only for a Search operation, and when the requested action is ‘cancel'. If
the value of the flag is 'yes,' the client requests that the server maintain the (possibly partial)
result set for subsequent Present operations. See 3.2.6.1.7.

3.2.6.2.4 Other-information

This parameter may be used by the client for additional information, not specified by the standard.
This parameter may be used only when version 3 is in force.

3.2.6.2.5 Reference-id
See 3.4.

3.2.6.3 Resource-report Service

The Resource-report service allows a client to request a Resource-report, pertaining to a
specified, completed operation, or to the entire Z-association.

Note: The Resource-report service differs from the Trigger-resource-control service, in this
respect: Trigger-resource-control is a non-confirmed service; there is a request, but no response.
The request is part of, but does not initiate, an operation; it requests a report pertaining to that
active operation. Resource-report, in contrast, is a confirmed service; there is a request and a
response (the server is obliged to respond, although the server is not obliged to include a
resource report in the response). The request and response initiate and terminate an operation
respectively; the request identifies a particular completed operation and solicits a report
pertaining to that operation (or it may solicit a report pertaining to the entire Z-association).

ONISO Page 46

ANSI/NISO Z39.50-2003

Parameters of the Resource Report Service

Parameter Name Client Request Server Reference
Response

Preferred-Resource- 0 3.263.1
report-format
Op-id 0 3.2.6.3.2
Resource-report- m 3.26.33
status
Resource-report 0 3.2.6.3.4
Other-information 0 0 3.25.35
Reference-id 0 ia 3.4

3.2.6.3.1 Preferred-resource-report-format

The client may indicate a resource report format that it prefers.

3.2.6.3.2 Op-id

This parameter may be supplied by the client to identify a completed operation for which the client
requests a resource report. This parameter may be used only when version 3 is in force.

If Op-id is present, it consists of a Reference-id, and refers to the most recently completed

operation that used that Reference-id.

Notes:

1. When an operation terminates, if the client anticipates that it will subsequently issue a
Resource-report request pertaining to that operation, it is the client's responsibility to
ensure that the Reference-id is not re-used before doing so.

2. The client may (but need not) use the same reference-id for the Resource-report
operation as that specified in Op-id, and if so, Op-id will nevertheless pertain to a
completed operation only. However, it is recommended that the client not specify a value
of Op-id equal to any reference-id being used by any active operation other than this
Resource-report operation. If the client does so, the server may (but need not) consider
the request in error (see failure-6 of Resource-report-status).

3. If the client wants resource information about an active operation, it should not use the
Resource-report service, but instead use the Trigger-resource-control service, as part of
that operation. If the operation terminates before the server receives the Trigger-
resource-control request, the client will receive a terminating response and may then
subsequently issue a Resource-report request pertaining to that (completed) operation.

If Op-id is not present, the client requests a resource report pertaining to the Z-association.

3.2.6.3.3 Resource-report-status

The server supplies one of following status values:

ONISO

Page 47

ANSI/NISO Z39.50-2003

Status Meaning

success A resource report is included (and in the preferred
format, if the parameter Preferred-resource-report-format
was included in the request)

partial A resource report is included, but not in the preferred
format (applies only if the parameter Preferred-resource-
report-format was included in the request)

failure-1 Server unable to supply resource report

failure-2 Operation terminated by server due to resource
constraints

failure-3 Access-control failure

failure-4 Unspecified failure

failure-5 There is no known operation with specified id

failure-6 There is an active operation with specified id

Note: Failure-5 and failure-6 apply only when version 3 is in force.

3.2.6.3.4 Resource-report
See 3.2.6.1.1.

3.2.6.3.5 Other-information

This parameter may be used by either the client or server for additional information, not specified
by the standard. This parameter may be used only when version 3 is in force.

3.2.6.3.6 Reference-id
See 3.4.

3.2.7 Sort Facility

The Sort facility consists of a two services, Sort and Duplicate-detection.

3.2.7.1 Sort Service
The Sort service allows a client to request that the server sort a result set (or merge multiple
result sets and then sort). The client specifies a sequence of sort elements. The result set is to be
ordered according to the specified sequence, and subsequent positional requests against the
result set will be construed by the server to apply to the result set as so ordered.

ONISO Page 48

ANSI/NISO Z39.50-2003

Parameters of the Sort Service

Parameter Name Client Request Server Response | Reference
Input-result-sets m 3.2.7.1.1
Sorted-result-set m 3.2.7.1.2
Sort-sequence m 3.27.1.3
Sort-status m 3.27.14
Result-set-status ia 3.2.7.1.5
Diagnostics ia 3.2.7.1.6
Result-count 0 3.2.7.1.7
Other-information 0 0 3.27.1.8
Reference-id 0 ia 3.4

3.2.7.1.1 Input-result-sets

This parameter is the name of a result set to be sorted, or the names of result sets to be merged
and the result sorted.

3.2.7.1.2 Sorted-result-set

This parameter is the name of the sorted result set. It may be the name of an existing result set
(including one of the names included in Input-result-set); if so, then if the sort is processed, the
existing result set is deleted, and a new result set by that name is created; its content is the
sorted results. If Sorted-result-set is not the name of an existing result set and if the sort is
processed, a result set by the specified name is created by the server, whose content is the
sorted results; the content of the Input-result-sets is left unchanged. In any case, if the sort is not
processed, the final content of Sorted-result-set is indicated by the parameter Result-set-status.

3.2.7.1.3 Sort-sequence

The parameter Sort-sequence comprises the elements that are to be used for sorting, together
with the direction of the sort (ascending or descending), case sensitivity (if applicable), and server
action if an element is missing from a record in the result set to be sorted.

Each sort element includes a sort key (that the server has designated either via the Explain
facility, or through some mechanism outside of the standard) that takes one of three possible
forms:

(1) field-in-record
(2) abstract access point
3) private sort key

(1) and (2) correspond respectively to a "retrieval" and "search" view of the record.

The “field-in-record”, corresponds to a retrieval element of the record, as defined perhaps by a
schema, and specified by an element specification, such as eSpec-2, or by an element set name.

ONISO Page 49

ANSI/NISO Z39.50-2003

The element specification or name should resolve to a single element; if it resolves to several
elements, the sort key is not well defined.

"abstract access point" corresponds to a search attribute, or several; however if several are
supplied, then similarly, they should resolve to a single abstract access point.

"private sort key" is used when the client and server have a prior agreement about what the
supplied key means. For example the client may supply the string 'author’, where that string
doesn't denote any particular field in the record as defined by the schema, and it isn't an
attribute (no attribute set id) but the server knows (because of prior agreement) that that
string, when supplied as a private sort key, and when applied to the records in question,
refers to a specific field.

3.2.7.1.4 Sort-status

The parameter Sort-status, returned by the server, assumes one of the following values:

Sort Status Meaning

success The sort was performed successfully

partial-1 The sort was performed but the server encountered
records with missing values in one or more sort
elements

failure The sort was not performed. The server supplies one or

more diagnostics in the parameter Diagnostics

3.2.7.1.5 Result-set-status

The server supplies this parameter if and only if the value of Sort-status is 'failure'. It refers to the
contents of Sorted-result-set, and its value is one of the following:

Result-set Status Meaning

empty The result set is empty

interim Partial results available, not necessarily valid
unchanged The content of the result set is unchanged (applies only

if Sorted-result-set is one of the input result sets)

none Result set not created (applies only if Sorted-result-set is
not one of the input result sets)

3.2.7.1.6 Diagnhostics

The server includes this parameter if the value of Sort-status is 'failure'. It includes one or more
diagnostic records.

ONISO Page 50

ANSI/NISO Z39.50-2003

3.2.7.1.7 Result-Count

The server may use this parameter to report the size of the output result set. The server is never
obligated to supply this parameter, there is no default value, and the client should not draw any
conclusion from its omission.

3.2.7.1.8 Other-information

This parameter may be used by the client or server for additional information not specified by the
standard.

3.2.7.1.8 Reference-id
See 3.4.

3.2.7.2 Duplicate Detection Service

The Duplicate Detection service allows the client to request that the server analyze one or more
result sets in terms of potential duplicates and to construct a new result set according to
client-specified criteria for detecting, retaining, grouping, and ordering the records including
duplicates.

The following notation is used in the "Client Request" and "Server Response" column:

[0,1] means parameter is optional, not repeatable; i.e. zero or one.
0+ means parameter is optional, repeatable; i.e. zero or more.

1 means parameter is mandatory, not repeatable; i.e exactly one.
1+ means parameter is mandatory, repeatable; i.e. one or more.

Parameters of the Duplicate Detection Service

Parameter Name Client Request|Server Condition Reference
Response
Input Result Set Id 1+ 32721
Output Result Set Name 1 32721
Applicable Portion of Record [0,1] 3.2.7.2.2
Duplicate-detection Criterion 0+ 3.27.2.3
Clustering [0,1] May be omitted if 32724

representative record only is to
be retained (if Retention
Criterion is 'number of entries'
and its value is 1). Otherwise
must be supplied.

Retention Criterion 1+ 3.2.7.25

Sort Criterion 0+ 3.2.7.2.6

ONISO Page 51

ANSI/NISO Z39.50-2003

Parameter Name Client Request|Server Condition Reference
Response
Status 1 32727
Result count [0,1] Must occur if Status is 3.27.28
'success’.

Diagnostic 0+ Must occur if Status is 'failure’. 3.27.29
Other-information [0,1] [0,1] 3.2.7.2.10
Reference-id [0,1] [0,1] See 34 327211

3.2.7.2.1 Input Result Set Id and Output Result Set Name

The client identifies one or more transient result sets belonging to the current Z-association. The
server is to logically merge the sets (removing duplicates and ordering equivalence classes
according to the parameters below) into a single result set, specified by the parameter Output
Result Set Name.

3.2.7.2.2 Applicable Portion of Record

The client may specify what portion of the record is subject to matching (for example, one or more
fields) for purposes of duplicate-detection. If this parameter is omitted, the server decides what
portion of the record is subject to matching.

3.2.7.2.3 Duplicate-detection Criterion

For modeling purposes, a temporary, intermediate result set (not the output result set) is
assumed to be created, which includes all of the result set items from all of the input result sets
(including duplicate result set items). The server applies duplicate-detection criteria supplied in
this parameter (or if the client omits this parameter, the server applies whatever duplicate
detection criteria it chooses) to partition the intermediate result set into one or more equivalence
classes where two result set items are considered equivalent if they are duplicate. That is, the
partitioning has the following properties:

Every result set item from one of the input result sets is in exactly one class
Any two result set items are in the same class if and only of they are duplicates

The server distinguishes a single result-set item within each equivalence class as the
representative record for that class. The selection of representative record might be based on the
value of the parameter Sort Criterion.

ONISO Page 52

ANSI/NISO Z39.50-2003

The client may specify one or more criteria for detecting duplicates. These include the following

(the list is subject to extension):

level of match

Case sensitive
Punctuation sensitive

Regular expression

result-set duplicates

3.2.7.2.4 Clustering
The client indicates one of the following:

Clusters

Individual Entries

If this criterion is included, the client specifies a level of
match in terms of a percentage. For example,
fingerprints might be duplicates based on a 60% match;
100% might mean that records are duplicates only if they
are identical.

If this criterion is included the client supplies a regular
expression to govern matching.

Two result set items are result-set duplicates if they point
to the same database record.

The output result set is to contain one item for each
equivalence class. For each equivalence class, create a
result set item for the representative record only and
maintain duplicates as metadata. (Records may
subsequently be presented either as (a) representative
record with duplicates attached as metadata, using, for
example, GRS; or (b) as a cluster record, using an
appropriate cluster syntax.)

Create individual result set items for representative
records as well as duplicates that are to be retained
(according to Retention Criterion). Order the output
result set such that records within an equivalence are
grouped together. The parameter Sort Criterion may be
supplied, to indicate how the records within a class are
to be ordered.

This parameter may be omitted only if 'Number of entries' is supplied as a retention criterion
(parameter Retention Criterion) and the value supplied is 1.

3.2.7.2.5 Retention Criterion

The client specifies one or more criteria for how records are to be selected for inclusion in or
exclusion from each equivalence class. These include the following (the list is subject to

extension):

1. Number of entries

If this criterion is selected, the client supplies a number,
N>0, meaning retain (up to) N entries in each

equivalence class. N=1 means retain the representative
record only. This value may be used in combination with

ONISO Page 53

2. Percent of entries

3. Duplicates only

4. Discard result-set duplicates

3.2.7.2.6 Sort Criterion

ANSI/NISO Z39.50-2003

(3) and/or (4), but not (2).

If this criterion is selected, the client supplies a
percentage, XX, meaning retain xx percent of the entries
in each equivalence class. xx=100 means retain all
entries. This value may be used in combination with (3)
and/or (4), but not (1).

Discard representative record. This value should not be
specified unless the value of parameter Clustering is
'Individual Entries'. This value may be used in
combination with (1) or (2), and/or (4).

This value may be used in combination with (1) or (2),
and/or (3). If used with (1) or (2) the result-set duplicates
should be discarded first (before entries are selected).

The client may provide one or more sort criteria for selecting the representative record as well as
for ordering records within an equivalence class.

This parameter will affect the ordering of result set items only within an equivalence class (it does
not affect the ordering of equivalence classes). If the value of parameter Clustering is 'Clusters'
then this parameter will have no effect whatever on the result set order (though it may be supplied
anyway, to govern the selection of representative records as well as the order in which duplicates
are presented within a single cluster record).

More than a single sort criterion may be supplied; if so, the order in which they are supplied is
from major to minor, and only the first criterion supplied is used to govern selection of a
representative record. The sort criteria include the following (the list is subject to extension):

Most Comprehensive

Least Comprehensive

Most Recent

Oldest

Least Cost

Preferred Database

Select the longest (more comprehensive) record as the
representative record; order duplicates within an
equivalence class by descending comprehensiveness.

Select the shortest (least comprehensive) record as the
representative record; order duplicates within an
equivalence class by ascending comprehensiveness.

Select the most recent record as the representative
record; order duplicates within an equivalence class by
ascending age.

Select the oldest record as the representative record,
order duplicates within an equivalence class by
descending age.

Select the least expensive record as the representative
record; order duplicates within an equivalence class by
ascending cost.

Select a record from the most preferred database as the

ONISO Page 54

ANSI/NISO Z39.50-2003

representative record; order duplicates within an
equivalence class corresponding to order of preference
of databases. When this criterion is supplied the client
includes a list of databases in order of preference.

3.2.7.2.7 Status

The server indicates a status of 'success' or 'failure’.

3.2.7.2.8 Result Count

If the value of parameter Status is 'success' then the value of this parameter is the size of the
output result set.

3.2.7.2.9 Diagnostic

The server may always include one or more diagnostics in the response. If the value of parameter
Status is 'failure’, at least one diagnostic must be included.

3.2.7.2.10 Other-Information

This parameter may be used by the client or server for additional information, not specified by the
standard.

3.2.7.2.11 Reference-id
See section 3.4.

3.2.8 Browse Facility

The Browse facility consists of a single service, Scan.

3.2.8.1 Scan Service

The Scan service is used to scan an ordered term list (subject terms, names, titles, etc.). The
ordering of the term list is server defined. The client specifies a term list to scan and a starting
term (implicitly, by specifying an attribute/term combination and a database-id), the size of the
scanning steps, and the desired number of entries and position of the starting term in the
response.

Note: The Z39.50 term list abstraction is intended as a generalization of the concept of an index

corresponding to a search access point. A term list may but need not necessarily be an index, or
correspond to a search access point.

ONISO Page 55

ANSI/NISO Z39.50-2003

Parameters of the Scan Service

Parameter Name Client Request Server Response | Reference
Database Names m 3.28.1.1
Term-list-and-start-point m 3.28.1.2
Step-size 0 ia 3.2.81.3
Number-of-entries m m 3.28.14
Position-in-response 0 0 3.28.15
Scan-status m 3.28.1.6
Entries 0 3.28.1.7
Other-information 0 0 3.28.1.8
Reference-id 0 ia 3.4

3.2.8.1.1 Database-names

The parameter, Database-names, identifies a set of databases to which the term list (specified by
Term-list-and-start-point) pertains.

3.2.8.1.2 Term-list-and-start-point

The client supplies an attribute list and term. The attribute list contains attributes indicating which
term list to scan. The term, as qualified by those attributes, indicates where scanning begins; this
will be a presumed entry in the term list. If there is no matching entry, the first entry with higher
value is to be the starting point.

As an example, to scan a list of personal names: the attribute list might consist of a single
attribute whose type is 'use' and whose value is '‘personal name'; the term would specify a
personal name; the database-id would identify one or more databases to which the list of

personal names pertains.

3.2.8.1.3 Step-size

The client may specify the desired number of entries in the term list between two adjacent entries
in the response. A value of zero means "do not skip any entries." If the server cannot support the
requested step size, it sets Scan-status to failure’ and includes a non-surrogate diagnostic such
as "only step size of zero supported” or "requested step size not supported.” If the client omits
this parameter, the step size is selected by the server, and the server includes the selected step
size in the response.

3.2.8.1.4 Number-of-entries

The client indicates the proposed number of entries to be returned. The server indicates the
actual number of entries returned. If the actual number is less than the proposed number, the
reason is indicated in Scan-status.

ONISO Page 56

ANSI/NISO Z39.50-2003

3.2.8.1.5 Position-in-response

The client may optionally indicate the preferred position, within the returned entries, of the
specified starting point value. A value of 1 refers to the first of the returned entries. A value of 0
means that the returned entries should begin with the term immediately following the starting
point term. A value of Number-of-entries + 1 means that the client requests terms immediately
preceding the starting point term.

The server may indicate the actual position of the chosen starting point within the returned
entries. Example: If the values of the request parameters Number-of-entries and Position-in-
response are 10 and 3 respectively, then the client requests two terms immediately preceding the
starting point value, followed by the starting point value, followed by the immediately-following
seven terms.

Note: If response parameter Position-in-response is less than the value proposed in the request,
the client may conclude that there were fewer terms than expected in the low end of the term list.
However, if Position-in-response is the same value in the response as proposed in the request,
but Number-of-entries in the response is less than the value proposed in the request, the client
may not conclude that there were fewer terms than expected at the high end of the term list,
unless Scan-status is Partial-5. The reason that fewer terms than expected are returned is
indicated in the Scan-status.

Example lllustrating the Semantics of the Position-in-response Parameter

Consider a term list that includes consecutive terms A, B, C, D, E, and F; the Scan Request
specifies C as the starting term, and 2 for Number-of-entries. If the value of Position-in-response
is 1, terms C and D are to be supplied. If the value of Position-in-response is 2, terms B and C
are to be supplied. If the value of Position-in- response is 3 then terms A and B are to be
supplied. If the value of Position-in-response is zero, Terms D and E are to be supplied. If the
value of Position-in-response is minus 1, then terms E and F are to be supplied; etc.

3.2.8.1.6 Scan-status

The server indicates the result of the operation. The defined values are:

Value of Scan-status Meaning

success The response contains the number of entries (term-list-entries or
surrogate diagnostics) requested.

partial-1 Not all of the expected entries can be returned because the
operation was terminated by access-control.

partial-2 Not all of the expected entries will fit in the response message.

partial-3 Not all of the expected entries can be returned because the
operation was terminated by resource-control, at client request.

partial-4 Not all of the expected entries can be returned because the op-
eration was terminated by resource-control, by server.

partial-5 Not all of the expected entries can be returned because the term
list contains fewer entries (from either the low end, high end, or
both ends of the term list) than the number of terms requested.

ONISO Page 57

ANSI/NISO Z39.50-2003

Value of Scan-status

Meaning

failure

None of the expected entries can be returned. One or more non-
surrogate diagnostics is returned.

3.2.8.1.7 Entries

The parameter Entries returned by the server:

Consists of one of the following:

- N entries, where each entry is a term-list-entry or surrogate diagnostic, where N =
Number-of-entries in the request

- A number of entries that is less than N, and may be zero (reason specified by Scan-

status)

And may also include:

- One or more non-surrogate diagnostic records (possibly indicating that the operation
cannot be processed, and why it cannot)

Each term-list-entry includes a term (occurring in one of the databases specified in the parameter
Database-names), and optionally the following:

A display term (when the actual term is not considered by the server to be suitable for

display)

A list of suggested attributes for use in subsequent Scan requests (useful for scanning
multiple indices, e.g. author and title, at the same time)

A suggested alternative term

Occurrence-information: this might include a count of records in which the term occurs. It may
also list counts for specific attributes, possibly further broken down by database. Alternatively,
a term-list-entry might list databases in which the term occurs, and for associated attributes,

but no counts.

Note: A “Count” is a number of records. There is no mechanism provided by this standard to
indicate the count of occurrences of the term.

Other information: additional information concerning the entry

3.2.8.1.8 Other-information

This parameter may be used by the client or server for additional information, not specified by the

standard.

3.2.8.1.9 Reference-id

See 3.4.

3.2.9 Extended Services Facility

The Extended Services facility consists of a single service, Extended-services.

ONISO Page 58

ANSI/NISO Z39.50-2003

3.2.9.1 Extended Services Service

The Extended-Services (ES) service allows a client to create, modify, or delete a task package at
the server. The server maintains task packages in a special database, described in section
3.2.9.2. A task package pertains to an ES task.

An extended service is a task type, related to information retrieval, but not defined as a Z39.50
service. Execution of a task by the server is outside the scope of Z39.50. The extended services
defined by this standard are listed in section 3.2.9.1.2. Definitions of those services are included
in Appendix EXT.

The client sends an ES Request to the server requesting execution of a task. The request
includes parameters that the server uses to construct the task package. The server checks the
request for validity, for consistency with the user's access privileges, and possibly for other
server-dependent limitations. The server sends an ES response indicating that the request was
accepted or supplying an indication of the reason the request was rejected.

The ES service is a confirmed service, initiated by the client. The ES operation consists of a
request from the client and a response from the server, possibly with intervening Access-control
or Resource-control messages. However, although the request may result in the initiation of a
task, the task is not considered part of the Z39.50 ES operation. The server response, which
completes the ES operation, does not necessarily signal completion of the task. A task may have
a lifetime that exceeds a single Z-association. Execution of the ES Operation results in the
creation of a task package, represented by a database record in the ES database.

For example, when a server creates a task package of type PersistentResultSet, a (persistent)
result set is created, represented by the created task package, in the form of a record in the
extended services database. When that package is subsequently retrieved by a client, in either
the same or a different Z-association, a copy of that persistent result set is made available to that
Z-association, as a Z39.50 result set (i.e. as a transient result set; a result set name, for use
during the Z-association, is included within the task package). When a client deletes the task
package, the persistent result set is deleted.

A task package contains parameters, some of which are common to all task packages regardless
of package type, and others that are specific to the particular extended service. Among the
common parameters (indicated in the table below, listed under "task package parameter” in the
right column), some are supplied by the client as parameters in the ES request, and are used by
the server to form the task package; some of those supplied by the client may be overridden by
the server. Others are supplied by the server. The specific parameters are derived from the
parameter Task-specific-parameters of the ES request (see Appendix EXT).

Note: The response parameter Task-package below refers to the actual task package, and if it

occurs (see 3.2.9.1.13), it includes some or all (depending on the parameter Elements) of the
parameters listed under "task package parameter."

ONISO Page 59

ANSI/NISO Z39.50-2003

Parameters of the Extended Services Service

Parameter Name Client Server Task-Package Reference
Request | Response | Parameter

Function m 3.29.11
Package-type m 3.29.1.2
Package-name 0 0 3.29.13
User-id 0 0 32914
Retention-time 0 0 32915
Permissions 0 0 3.29.16
Description 0 0 3.29.1.7
Server-reference 0 32918
Creation-date-time 0 3.29.19
Task-status 0 3.29.1.10
Package-diagnostics 0 3.29.1.11
Task-specific-parameters m (Task-specific) 329112
Wait-action m 329113
Elements ia 3.29.1.14
Operation-status m 3.29.1.15
Operation-diagnostics ia 3.29.1.16
Task-package ia 0 3.29.1.17
Other-information 0 0 3.2.7.1.18
Reference-id 0 ia 34

3.2.9.1.1 Function

The client specifies Create, Delete, or Modify. If the function is Create, the server is to create a
task package, and assign to it the name specified by the parameter Package-name, if supplied.

If the function is Delete or Modify, the server is to delete or modify the task package specified by
the parameter Package-name. A server that supports deletion or modification may nonetheless
deny the request, for example because the task is already in progress, or the package is in use.

ONISO Page 60

ANSI/NISO Z39.50-2003

If the function is Delete, the client requests that if the specified task has not been acted on, it
should not be started. If the task is active, the server should either terminate the task or refuse
the request.

If the function is Modify, the client requests that parameter values in the request (as well as those
within parameter Task-specific-parameters) replace the corresponding values in the task
package. If an optional parameter is omitted, the server does not modify that parameter within the
task package (thus to return a parameter to its default value, a client must explicitly provide the
default value).

3.2.9.1.2 Package-type

The Package-type identifies the extended service requested. The extended services defined by
this standard (see Appendix EXT) are:

Save a result set for later use

Save a Query for later use

Define a periodic search schedule

Order an item

Update a database

Create an export specification

Invoke a previously created export specification

3.2.9.1.3 Package-name

The client may optionally supply a name for the task package to be created. If so, the triple
(Package-type, User-id, Package-name) must be unique (i.e. there must be no other task
package of that type, for that user with the same name, otherwise the request is in error), and that
triple identifies the task package for subsequent reference. Package-name should be included if
the client intends to reference the task package.

3.2.9.1.4 User-id

The User-id identifies the user to be associated with the task package. If not supplied, this
parameter may default to the Id of the current user. A server may or may not allow a client to
supply a user id different from its own.

3.2.9.1.5 Retention-time

The client may optionally specify a retention period (e.g. 2 hours, 3 days, 1 week), which may be
overridden by the server. When the retention time has passed, the server may delete the retained
task package. A retention time of zero means the task package is not to be retained after the task
is completed.

3.2.9.1.6 Permissions

The client may indicate who may access the task package. If the client does not supply this
parameter, only the creating user may do so. See 3.2.9.3.

ONISO Page 61

ANSI/NISO Z39.50-2003

3.2.9.1.7 Description

The client may include a description. It might describe, for example, the result set, for a Persistent
Result Set task; or the query, for a Persistent Query task.

3.2.9.1.8 Server-reference

The server may supply a unique identifier for the task package.

3.2.9.1.9 Creation-date-time

The server supplies the date and time that the task package was created.

3.2.9.1.10 Task-status

The server indicates the status of the task. Values are 'pending,’ 'active,' ‘complete,’ and 'aborted'.
See also 3.2.9.5.

3.2.9.1.11 Package-diaghostics

The server may include one or more diagnostics in the task package.

3.2.9.1.12 Task-specific-parameters

These are additional parameters, defined by the specific extended service.

3.2.9.1.13 Wait-action

The client indicates whether the server should (or may) include the task package in the ES
response. This immediate response mechanism may avoid the need for follow-up Search and
Present operations, or in general, for making the task package available through the extended
services database (see section 3.2.9.2).

This parameter has four possible values:

Value of Wait-action Meaning

wait The server must perform the task before issuing the ES response
(unless the operation aborts; see section 3.2.9.4). If the tar-get is
not willing to perform the task before issuing the response it must
refuse the request by responding with a status of 'failure’ and an
appropriate diagnostic. If the server accepts the request, it includes
the parameter Task-package in the response.

wait-if-possible The client requests that, if possible, the server perform the task
before issuing the ES response and include the task package in
the response. If not possible, the server should proceed as though
the value were 'do not wait'.

ONISO Page 62

ANSI/NISO Z39.50-2003

Value of Wait-action Meaning

do-not-wait The client does not request that the server attempt to perform the
task before issuing the ES response. However, if the server does
perform the task before issuing the response, then the response
may include the task package.

Do-not-send-task-package The server may perform the task when it chooses, but is not to
include the task package in the response under any circumstance.

3.2.9.1.14 Elements

The client may optionally include this parameter if Wait-action is other than ‘do-not-sent-task-
package'. It is an element set name for the task package, in the event that it is returned in the
response parameter Task-package.

3.2.9.1.15 Operation-status

This is the status of the ES operation. It is one of the following:

Value of Operation-Status Meaning
done The request was accepted, the task is complete and results
are included in Task-package.
accepted The request was accepted and the task is queued for
processing, or is in process
failure The request was refused. One or more diagnostics are
supplied (in parameter Operation-diagnostics).

See also 3.2.9.5.

3.2.9.1.16 Operation-diagnostics

The server may supply additional diagnostic information if Operation-status is ‘failure’.

3.2.9.1.17 Task-package

If Operation-status is 'done,’ the server includes the task package. The portion of the actual task
package included depends on the parameter Elements.

3.2.9.1.18 Other-Information

This parameter may be used by the client or server for additional information, not specified by the
standard.

3.2.9.1.19 Reference-id

See section 3.4.

ONISO Page 63

ANSI/NISO Z39.50-2003

3.2.9.2 The Extended Services Database

Servers that support the Extended Services facility provide access to a database with the name
IR-Extend-1 (referred to as the "extended services database" or "ES database").

Note: Thus if a server claims to support Extended Services, it supports the ES database to the
extent, at minimum, that if a client searches IR-Extend-1 the server will not fail the search
because there is no such database. In the case where the server does not create task packages
(see next note) it may always respond to searches that zero records were identified.

Records in the extended services database are task packages constructed from the Request-
parameter-package parameter in ES requests (the server may begin execution of the task at any
time after it accepts the request, which may be before the task package has been stored in the
database). The server may (but need not) retain a task package until the requested task has
completed; it may retain the task package until the client requests that it be deleted. A server may
unilaterally delete a task package from the ES Database at any time.

Note: This means, as a practical matter, the server need not actually create a task package for a
given task, in particular, when the task is executed immediately. However, it is recommended that
a task package exist when the status of the task is pending, active, or aborted.

When the server receives an ES request it may immediately create a task package, with status
‘pending,’ before completely validating the request. The client may thus search the database
anytime after submitting a request (during the same or a subsequent Z-association), for a
resulting task package. In particular, if an ES operation is aborted (see 3.2.9.4) the client may be
able to determine that the request for that operation was received.

An ES database may be listed in the server Explain database, with a list of extended services the
server supports, allowable export destinations, options that a client may supply for an export task,
etc.

An extended services database will appear to the client as any other database supported by the
server (records may be searched and retrieved by the Z39.50 Search and Retrieval facilities;
search processing is defined locally by the server; the server may impose access control or
exclude records to which the client is not authorized access). However, certain search terms are
predefined in order to allow a semantic level of interoperability. The attribute set used to search
the database is defined in Appendix ATR. The task package structures are defined in Appendix
EXT.

The ES database may provide the following special element sets (in addition to "F"):

Element Set Name Meaning

Identification The creating user's identification, the client-supplied name of the task package,
and possible permissions for other users to access the request. Other identifying
information such as time of creation may be included.

UnigueName The creating user's identification and the name of the task package.

ONISO Page 64

ANSI/NISO Z39.50-2003

Element Set Name Meaning

Permissions The contents of the UniqueName element set, and in addition, the granted
permissions for the task package. A server might present the full permissions list
only to the task package creator, presenting to other users only the permissions
applicable to them.

Status A short summary of the current status of the request, perhaps including cost and
other resource usage.

Brief Identification element set plus the most important elements of the Status
element set.

3.2.9.3 Owners and Permissions

The creating user of a task package may apply any extended service function to the package, as
well as retrieve the full package (via the Retrieval facility) and invoke the package via other
extended services. (Invocation occurs, for example, when a Periodic Query task references a
saved Query.)

Using the Modify function of the ES request, a client can change the access permissions of a task
package by supplying a new permissions list, which is a sequence of user ids and for each, a
sequence of allowed operations, from the following set:

Delete
Modify-Contents
Modify-Permissions
Present

Invoke

As an example of the use of the 'invoke' permission, a server might create a task package, on
behalf of a client user, of type PersistentQuery; a persistent query is created, represented by the
created task package. The server may subsequently be requested to create a
PeriodicQuerySchedule task package, on behalf of a different user, which refers to (i.e. "invokes")
that persistent query task package. The server would do so only if that user has 'invoke' privilege
for that persistent query. As another example, a server may create an ExportSpecification
(package) on behalf of one user, and a different user may subsequently ‘'invoke' that
ExportSpecification by creating an InvokeExportSpecification package, if that user has 'invoke'
privilege for the ExportSpecification.

Servers may provide group names for use in permission lists, but a group name would be
syntactically the same as a user Id. (The server might report the composition of groups, but the
mechanism for doing so is not described by this standard.)

3.2.9.4. Aborted Operations

A client may receive a response to an ES request only during the Z-association in which it issues
the request (as for any other Z39.50 operation). If an ES operation is aborted (explicitly, or
because the Z-association is closed or the connection is lost), the client will not receive a
terminating response. This has no effect on the disposition or processing of the task, regardless

ONISO Page 65

ANSI/NISO Z39.50-2003

of the value of Wait-action that was specified on the request. If an ES operation aborts, Wait-
action automatically assumes the value 'do-not-send-task-package'.

If an ES operation is aborted, the client may search the ES database (possibly in a subsequent Z-
association) for information that would otherwise have been returned in the response.

3.2.9.5 Description of Status Parameters

Task-Status and Operation-Status (3.2.9.1.10 and 3.2.9.1.17) both apply to Extended Services in
general; individual Extended Services may define specific additional statuses (for example the
Update Extended Service defines Update-status and Record-status) Operation-status and Task-
status distinguish the ES operation from the ES task. The "ES operation" is the ES request
followed by the ES response, the result of which is the spawning of an ES task, which may be
monitored by Task-status. Thus Operation-status is set only once, after the operation is complete,
in contrast to Task-status, a dynamic status that changes as the status of the operation changes.
Neither of these two parameters conveys any status information specific to the ES type.

Task-status

Task-status is a general ES parameter, and it exists only in the task package (i.e. it is not an
explicit parameter of the ES response). Values are:

‘pending’,

‘active’,

‘complete’, and

‘aborted’

Its purpose is to allow the client, by repetitively retrieving the package, to monitor the progress of

its execution, from initiation of the ES operation until completion of the task. But it is not intended

to provide status specific to the type of task, and in particular, it is not intended to convey whether
the task was completed successfully, only that it completed.

In the abstract, when the server receives the ES request, if it passes preliminary inspection and
the task is queued, Task-status is ‘pending’; if it does not pass preliminary inspection then at the
server discretion there may not even be a task package created (see Operation status) but if
there is, its status is set to 'aborted’. Once the task starts (which may or may not be before the
server sends back the ES response) the status is set to 'active'. If it subsequently aborts, it is set
to 'aborted' and if it subsequently completes, it is set to ‘complete’. Note that the ‘pending’ state
need not occur; the server might start the task immediately upon receipt of the task package.

Operation status

Operation-status, in contrast to Task-status, is always included in the ES response. (Task-status
exists only in the task package, and the task package might not be included in the ES response.)
Its values are:

‘done’,
‘accepted', and
failure'.

ONISO Page 66

ANSI/NISO Z39.50-2003

The operation status of 'done’ means the task package is included in the ES response (in that
case this status is redundant); 'accepted' corresponds to Task-status of ‘pending' or 'active’, and
'failure’ corresponds to the case where the task package was not even set up because the task
did not pass preliminary inspection.

3.2.10 Explain Facility

The Explain facility allows a client to obtain details of the implementation of a server, including
databases available for searching, attribute sets and diagnostic sets used by the server, and
schema, record syntax and element specification definitions supported for retrieval. Servers that
support the Explain facility:

Provide access (via the 2Z39.50 Search and Present services) to a database with the name
IR-Explain-1 (referred to as the "Explain database");

Support the explain attribute set, exp-1, defined in Appendix ATR (which defines a set of Use
attributes and imports bib-1 non-Use attributes); and

Support the Explain syntax, which is defined in Appendix REC.

A record (or result set item representing a record) within the Explain database is referred to
as an "Explain record".

3.2.10.1 Searching the Explain Database

The Explain database appears to the client as any other database supported by the server.
However, certain search terms, corresponding to information categories, are predefined in order
to allow a semantic level of interoperability. Terms are searched case-insensitive.

The exp-1 attribute set is used to search the Explain database. Combinations of Use attributes
and terms allow searching upon information category; well-defined combinations of Use attributes
may be used to allow additional specification by the client to limit the records to those of
immediate interest. Combinations of exp-1 Use attributes to perform a common set of searches
are listed in 3.2.10.1.1 and 3.2.10.1.4. Since the Explain database may be searched as any other
database using attributes from one or more attribute sets, this list is not exhaustive. However, it is
recommended that a server supporting the Explain facility support this list of common searches.
As described in 3.2.10.1.2 and 3.2.10.1.3, the HumanStringLanguage, DateAdded,
DateChanged, and DateExpires attributes can be used in combination with any of the
combinations listed in 3.2.10.1.1 and 3.2.10.1.4.

The exp-1 attribute set consists of a set of Use attributes and imports the non-Use bib-1
attributes. It is recommended that a server supporting the Explain facility support the bib-1
relation attribute 'equal’ (see note), position attribute 'any position in field', and structure attribute
'key'".

Note: If the server intends to support searching based on date ranges (e.g. to limit a search to
records created before or after a particular date or between two dates), the server should also
support one or more of the following relation attributes: 'less than', 'less than or equal’, 'greater
than', and 'greater or equal'.

Clients should not in general expect that the explain database is searchable using the bib-1
truncation attribute, completeness attribute nor any of the alternative values of the relation,

ONISO Page 67

ANSI/NISO Z39.50-2003

position and structure attributes defined in bib-1. However, servers are free to provide access to
the Explain database using those and other alternative attributes and attribute values.

3.2.10.1.1 Searching for Predefined Information Categories

Records corresponding to a particular explain information category are searched by an operand
where the term is the name of that category; for example, all records corresponding to Targetinfo
are searched using the term "Targetinfo." For each category one or more key elements are
defined, and may be provided as search terms (using the appropriate attribute). A search with an
operand where the Use attribute = 'ExplainCategory' and the term is a category, and with
additional operands corresponding to each key for that category where the value of the Use
attribute is the key, should result in (at most) a single record.

The primary mechanism for search and retrieval of information from the Explain database is for
the client to select the records in a category using the Use attribute 'ExplainCategory' and to
extract desired information from those records to formulate a subsequent search. For example
the client may search records with ExplainCategory = 'Databaselnfo,' and retrieve summary
information (see 3.2.10.2.2) from those records. Each summary record will include a database
name, which serves as a key for a possible subsequent search.

A list and brief description of the Explain information categories (and thus search terms) are given
in the table below, as well as the keys for each category. In 3.2.10.3 each category is described
in detail.

A client should adhere to the following rules when searching an Explain database by the
predefined information categories.

To search for information about the server, use ExplainCategory="TargetInfo'.

To search for information about a specific database, use ExplainCategory='"Databaselnfo’ in
combination with the DatabaseName attribute to specify the key of the desired databaselnfo
record.

To search for information about a specific schema, use ExplainCategory='Schemalnfo' in
combination with the SchemaOID attribute to specify the desired schema.

To search for information about a specific tag set, use ExplainCategory="TagSetInfo' in
combination with the TagSetOID attribute to specify the desired tag set.

To search for information about a specific record syntax, use
ExplainCategory="RecordSyntaxInfo' in combination with the RecordSyntaxOID attribute to
specify the desired record syntax.

To search for information about a specific attribute set, use
ExplainCategory="AttributeSetIinfo' in combination with the AttributeSetOID attribute to specify
the desired attribute set.

To search for information about term lists for a database, use ExplainCategory="TermList-
Info' in combination with the DatabaseName attribute to specify the desired database.

To search for information about a specific extended service, use ExplainCategory =
‘ExtendedServicesInfo' in combination with the oid for that extended service.

To search for the attributes and combination of attributes which may be used in searching a
database, use ExplainCategory="AttributeDetails' in combination with the DatabaseName
attribute to specify the database for which attribute information is desired.

ONISO Page 68

ANSI/NISO Z39.50-2003

To search for information about a specific term list, use ExplainCategory="TermListDetails' in
combination with the name for the term list.

To search for the element set names defined for a record syntax for a particular database,
use ExplainCategory="ElementSetDetails' in combination with the RecordSyntaxOID attribute
to specify the desired record syntax and the DatabaseName attribute to specify the desired
database.

To search for the definition of a specific element set name, use ExplainCategory =
'‘ElementSetDetails' in combination with the ElementSetName attribute to specify the desired
element set name. There may be multiple records located since the explain database
contains one record for each element set name for each record syntax for each database.

To search for a particular element set name defined for a record syntax, for a particular
database, use ExplainCategory='"ElementSetDetails' in combination with the
ElementSetName attribute to specify the desired element set name, the RecordSyntaxOID
attribute to specify the desired record syntax and the DatabaseName attribute to specify the
desired database.

To search for the description of the elements of a retrieval record, for a particular record
syntax, in a specific schema, for a particular database, use
ExplainCategory='RetrievalRecordDetails' in combination with the RecordSyntaxOID attribute
to specify the desired record syntax, the SchemaOID attribute to specify the desired schema,
and the DatabaseName attribute to specify the desired database.

Category An Explain record in this Key(s)
category describes:
Targetinfo The server, including search constraints server name

imposed hy the server.

A database. A group of databases
offering a common set of characteristics
may be described as a single, logical,
database. In this case, a list of
databases subsumed within this logical
database is provided.

Databaselnfo database name

Schemalnfo A Schema. schema oid
TagSetinfo Atag Set. tagSet oid
RecordSyntaxInfo A record syntax. record syntax oid
AttributeSetinfo An attribute set, including the attributes attribute set oid

supported within the set.

TermListinfo

Term lists supported for a database.

database name

ExtendedServicesInfo

An extended service.

extended service oid

AttributeDetails

Attributes that can be used to search a
database including the other attributes
with which it may be combined.

database name

TermListDetails

Aterm list.

term list name

ElementSetDetails

An element set (for a particular record
syntax, for a particular database).

database name,
element set name,
record syntax oid

ONISO

Page 69

ANSI/NISO Z39.50-2003

Category An Explain record in this Key(s)
category describes:

RetrievalRecordDetails The elements of a retrieval record (for a databaseName,
particular record syntax, defined by a schema oid,
particular schema). recordSyntax oid

SortDetails Sort specification for a database. database name

Processing Processing instructions for a database, database name,
for a particular processing context, processing-context,
name of instructions, and object name,oid

identifier for the abstract syntax of the
externally defined Instructions.

VariantSetinfo A variant set definition; classes, types, variantSet oid
and values, for a specific variant set
definition supported by the server.
Support by the server of a particular
variant set definition does not imply that
the definition is supported for any
specific database or element.

Unitinfo Unit definitions supported by the server. unit system name
CategoryList Explain categories that the server (no key)
supports.

3.2.10.1.2 Searching for Information in a Particular Language

Elements intended to be presented to the user by the client are said to consist of "human
readable text." Each record includes a language element indicating the language of the human
readable text within the record. The explain database might contain several records with identical
information, in different languages. To search for records in a certain language, the
HumanStringLanguage attribute may be used (in conjunction with the three-character language
code as the term; see 239.53-1994).

For example, to search for a list of databases that have descriptive records in English, the query
might be of the form:

(Category = 'Databaselnfo’) AND (HumanStringLanguage = 'eng’)

The HumanStringLanguage attribute is intended primarily for use in Version 2. When version 3 is
in force, the use of variants is recommended.

3.2.10.1.3 Searching for Information by Control Dates

To search for new records in an Explain database, use the DateAdded attribute; for updated
records use the DateChanged attribute, for records based on their date of expiry use the
DateExpires attribute. Any of these three may be used in combination with the searches
described above.

ONISO Page 70

ANSI/NISO Z39.50-2003

3.2.10.1.4 Searching for Information Using Content Values

Some of the Explain records are searchable using attributes, which take values from elements
within the pertinent Explain records. These Use attributes can be used to select subsets of
records of specific information category. For instance, the Availability Use attribute can be used to
select those database information records for databases that are currently available. The use of
these attributes by a client should conform to the following rules.

To locate databases currently available, use the ExplainCategory attribute with term
‘Databaselnfo,' in combination with the Availability attribute with term 'yes'.

To locate the databases provided by a specific supplier, use the ExplainCategory attribute
with term 'Databaselnfo,’ in combination with the Supplier attribute with the supplier's name
as term.

To locate databases provided by a specific producer, use the ExplainCategory attribute with
term 'Databaselnfo’ in combination with the Producer attribute with the producer's name as
term.

To locate databases that are not proprietary, use the ExplainCategory attribute with term
'‘Databaselnfo," in combination with the Proprietary attribute with term 'no'.

To locate databases that have no user fee, use the ExplainCategory attribute with term
'‘Databaselnfo," in combination with the UserFee attribute with term 'no'.

3.2.10.2 Retrieval of Explain Records

A Present request for Explain records should specify the Explain syntax as the Preferred-record-
syntax. Each explain information category has its own record layout, and all are described in the
Explain syntax definition (see Appendix REC, REC.1).

Explain records include key elements that serve to uniquely identify each record. Each Explain
category is defined in term of key elements, non-key "brief" elements (see 3.2.10.2.2), "non-brief"
elements, and possibly other categories. Key elements are always part of the brief elements.

3.2.10.2.1 Retrieval and Human Readable Text

The Explain database might provide alternative variations of human readable information
(however, for language variations; see note below). For example, a text element might be
retrievable in ASCII, HTML, or PDF. To request a particular format, use the variant facilities of
Version 3.

Note: For language variation, see 3.2.10.1.2. The Explain database logically includes different
records for different languages, and therefore selection based on language occurs during the
search.

3.2.10.2.2 Retrieving Summary and Descriptive Information

The Explain facility provides for the retrieval of summary, or "brief" information. For example the
client may request summary information about all of the databases supported by a server without
retrieving the full databaselnfo records. Within each category's definition, elements are
designated as "brief" or "non-brief." Elements designated "brief" are obtained when using the
element set name 'B'. Elements designated "non-brief" are obtained (along with brief-elements)
when using the element set name 'F'.

ONISO Page 71

ANSI/NISO Z39.50-2003

The Explain facility also provides for the retrieval of descriptive information, for certain categories,
via the element set name 'description’ (for details, refer to the ASN.1 definition for the Explain
syntax). For example, a Database-info record includes an element that contains a description (in
human readable text) of the database; to retrieve only the brief elements and the description
element, the element set name 'description’ may be used.

Individual categories defined in the Explain syntax may designate other element set names for
specific subsets of information within that category.

3.2.10.3 Detailed Descriptions of the Information Categories

This section includes complete descriptions of each information category. In addition to the
information enumerated, each record:

Contains information about the record itself, e.g. date of creation and expiration date of the

record

Includes an element indicating the language of the "human readable text" elements of the
record

These are logical descriptions, which do not reflect the possibility that there might be language
variants of a record or syntax variants of an element.

Many of the Explain elements are optional, but are not so indicated in the description below. For
specific information, refer to the ASN.1 definition.

3.2.10.3.1 Targetinfo

Targetinfo is information about the server. There is one such Explain record in the Explain
database.

Brief elements:

A name for the server (only one), in human readable text

Recent news of interest to people using this server, in human readable text

An icon used to represent this server (in machine presentable form)

Whether named results sets are supported (result set names other that "default”)
Whether multiple databases can be searched in one search request

The maximum number of concurrent result sets supported, for a given Z-association. Thus
for example, if the value is 2, say a client creates (via a search) result set A, then B; a
subsequent attempt to create C will exceed the maximum (note however that the server
action when the maximum is exceeded is not specified; for instance, the server might
unilaterally delete A in order to create C, or it might return an error), however, if the client first
deletes B, then it could create result set C without exceeding the maximum.

The maximum size (in records) of a result set

The maximum number of terms allowed in one search request. This is subject to server
interpretation. It could mean maximum number of operands in the search, or operands of the
form "attributesPlusTerm". Or, suppose for example result set A is the result of the search
"cat" AND "dog"; and result set B is the result of the search (Result set A) AND "moon". The
latter search has only one "Term", it has two "Operand"s, and all together the search involves
three terms.

ONISO Page 72

ANSI/NISO Z39.50-2003

A timeout interval after which the server will trigger an event if no activity has occurred.
A "welcome" message from the server to be displayed by the client.
Contact information for the organization supporting this server
A description of the server, in human readable text
A set of nicknames or alternate names by which the server is known
Restrictions pertaining to this server, in human readable text
A payment address (e.g. business office) for the organization supporting this server
Hours of operation
A list of supported database combinations
Internet address and Port number
Languages supported for message strings
The following elements, where each object listed is supported for one or more databases. (To
determine which are supported for a particular database, retrieve the record for that
database.)
- Which query-types are supported, and details for each supported type
- Diagnostic sets supported
- Attribute sets supported
- Schemas supported
- Record syntaxes supported
- Resource challenges supported
- Access challenges supported
- Cost information
- Variant sets supported
- Element set names supported
- Unit systems supported

3.2.10.3.2 Database-Info

Database-Info is a detailed description of a database and database-related restrictions and
parameters. There is one such Explain record for each database supported.

Brief elements:

Full database name (only one)

Whether this is an Explain database (possibly for a different server)

A list of short (or alternate) names for the database

An icon used to represent this database (in machine presentable form)
Whether there is charge to access this database

Whether this database is currently available for access

A human-readable name or title for the database (as opposed to the database name, which is
typically a short string not meant to be human-readable, and not variable by language.)

ONISO Page 73

ANSI/NISO Z39.50-2003

Non-brief elements:

A list of keywords for the database
A description of the database, in human readable text

Associated databases: those that the server allows (and possibly encourages) to be
searched in combination with this database

Sub-databases that make up this conceptual single database

Any disclaimers concerning this database, in human readable text

News about this database, in human readable text

A record count for the database (and whether the count is accurate or an estimate)
A description of the default order in which records are presented, in human readable text
An estimate of the average record size (in bytes)

A maximum record size (in bytes)

Hours of operation that this database is available

Best time to access this database, in human readable text

Time of last update of this database

Update cycle/interval for this database

Coverage dates of this database, in human readable text

Whether this database contains proprietary information

A description of copyright issues relating to this database, in human readable text

A notice concerning copyright that the server expects the client to display to the user if
possible, in human readable text

Description and contact information for the database producer, database supplier, and for
how to submit material for inclusion in this database, in human readable text

Which query-types are supported for this database, and details for each supported type
Diagnostic sets supported for this database

Attribute sets supported for this database

Schemas defined for this database

Record syntaxes supported by this database

Resource reports supported for this database

Text describing access control for this database, in human readable text

Costing information related to this database, in both machine-readable format, and in human
readable text, for connect, present, and search

Variant sets supported for this database

Element set names supported for this database, with names and descriptions given in human
readable text

Unit systems supported for this database

3.2.10.3.3 Schema-Info

Schema-Info is descriptive information about a database schema. There is one Explain record for
each schema supported by the server.

ONISO Page 74

ANSI/NISO Z39.50-2003

Note: This is not specific to a database.

Brief elements:

The object identifier of the schema definition
The name of this schema

Non-brief elements:

A description of this schema, in human readable text
TagSets used by this schema, and for each, a designated tagType
The abstract record structure defined by this schema

3.2.10.3.4 Tag-Set-Info Descriptive information about a given tagSet

TagSetInfo is included as an Explain category to allow a client to retrieve (and in turn allows the
end-user to discover) information about a tagSet supported on the server. The server can convey,
for a supported tagSet, the identifier of the tagSet (an Object Identifier), and for each supported
element, its name, tag, datatype, and description.

This Explain category might support collaboration between the end-user and client, where the
client retrieves the TagSetinfo information and conveys names and descriptions to the end-user,
who then decides which elements are of interest and requests the client to retrieve those specific
elements. Thus the semantics of an individual element are conveyed transparently to the
end-user, the client never needs to understand their meaning, only their datatype and tag; and
the end-user never knows the tag or datatype.

There is one such Explain record for each supported tagSet.

Brief elements:
The object identifier for the tagSet
The name of this tagSet
Non-brief elements:

A description of this tagSet, in human readable text
For each element defined in the tagSet

- The name of the element

- Nicknames for the element

- The tag assigned to the element
- A description of the element

- Its datatype

3.2.10.3.5 Record-Syntax-Info

Record-Syntax-Info is descriptive information about a record syntax. There is one Explain record
for each abstract record syntax supported by the server.

ONISO Page 75

ANSI/NISO Z39.50-2003

Note: This is not specific to a database.

Brief elements:
The object identifier of the abstract record syntax
A name by which this syntax is known

Non-brief elements:

Transfer syntaxes supported for this abstract syntax (object identifiers)
A description of this abstract record syntax, in human readable text
An ASN.1 module describing the syntax

The record structure defined by this syntax.

3.2.10.3.6 Attribute-Set-Info
Attribute-Set-Info is descriptive information about an attribute set. There is one record for each
supported attribute set.
Brief elements:
The attribute set Id (object identifier) for this attribute set
Its name
Non-brief elements:

For each attribute type, its name, description, and integer value of the type, and a list of
attributes.

- Its name
- Description
- lts value

- Names of equivalent attributes. Equivalences are derived from the attribute set
definition (not from the servers behavior)

Description of the attribute set

3.2.10.3.7 TermList-Info

TermList-Info is descriptive information about term-lists. There is one Explain record for each
database.

Brief elements:

Full database name (one only).

Summary information about each term-list associated with this database (for each term-list
described, there is a TermList-details record):

- Name of the term-list. Must be unique for the database. This is the name to be used
to search for the TermList-details record for this term list.

- lIts title. For users to see; need not be unique

ONISO Page 76

ANSI/NISO Z39.50-2003

- Anindication of how expensive it is to search, using the associated attributes. The
server indicates one of the following:

The attribute (combination) associated with this list will do fast searches.
Note: To obtain the attribute combination, retrieve the associated
TermList-details record.

The attribute (combination) will work as expected. So there is probably
an index for the attribute (combination) or some similar mechanism.

Can use the attribute (combination), but it might not provide satisfactory
results. Probably there is no index, or post- processing of records is
required.

Cannot search with this attribute (combination) alone

- Whether the term-list may be scanned
- Alist of names of alternative, broader term-lists

- Alist of names of alternative, narrower term-lists

(No non-brief elements.)

3.2.10.3.8 Extended-Services-Info

Extended-Services-Info is descriptive information about an extended service. There is one
Explain record for each extended service supported.

Brief elements:

The object identifier of the extended service
A name by which this extended service is known
Boolean flags, indicating:

- Whether it is a private extended service
- Whether restrictions apply
- Whether a fee applies
- Whether the service is available
- Whether retention is supported
What level of wait-action is supported
Non-brief elements:

A description, in human readable text

Explain elements specific to this extended service (defined within the specific extended
service definition)

An ASN.1 module for the Explain definition

3.2.10.3.9 Attribute-Details

Attribute-Details contain information for each attribute. There is one Explain record for each
supported database.

ONISO Page 77

ANSI/NISO Z39.50-2003

Brief elements:
Name of the database to which this attribute information applies

Non-brief elements:

For each attribute set supported for the database, the object identifier of the attribute set, and
for each attribute within the set:

- The attribute type

- A default value which applies if the attribute is omitted, and a description of default
behavior in human readable form
- For each value of the attribute:

The attribute value
A description of that value in human readable text
Sub-attributes (for Use attributes): a list of alternative values that allow
access to the same aspect of the record, but in greater detail
Super-attributes (for Use attributes): a list of alternative values that allow
access to the same aspect of the record at a coarser level
Whether the value is only "partially supported”: i.e. the value is accepted
but may not provide expected results

A list of all attributes combinations supported for the database

3.2.10.3.10 Term-list-Details

Terme-list-Details is descriptive information for a term-list. There is one record for each term-list
listed by TermList-info records.

Brief elements:
Name of the term-list

Non-brief elements:

A description

Attribute combination corresponding to this list. If list may be scanned, this is the attribute
combination to be used by scan.

Maximum step-size supported

Collating sequence (e.g. ASCII) in human-readable text
Order (ascending or descending)

Estimated number of terms

A list of sample terms (not guaranteed to be valid; optimally would represent a uniformly
distributed sampling of the list)

3.2.10.3.11 Element-Set-Details

Element-Set-Details is descriptive information about an element set. There is one Explain record
for each element set for each record syntax for each database.

ONISO Page 78

ANSI/NISO Z39.50-2003

Brief elements:
The database to which this record pertains
The element set name for the element set described by this record
The record syntax to which this record pertains
The schema for which this element set is defined

Non-brief elements:

A description, in human readable text, of the element set

For each element in the element set, the information provided for each element by the
Retrieval-Record-Details category

3.2.10.3.12 Retrieval-Record-Details

Retrieval-Record-Details is descriptive information about the elements of a retrieval record. Note
that the elements are relative to a database schema. There is one such Explain record for each
database for each schema for each record syntax.

Brief elements:
The database, schema, and record syntax to which this Explain record pertains

Non-brief elements (for each element described by the syntax):

The name of the element

The tag of the element, if any

A list of schema elements that comprise this element within the record syntax
The maximum size of the element

The minimum size of the element

The average size of the element

The size of the element, if fixed length

Whether or not the element is repeatable

Whether or not the element is required

A description of the element, in human readable text

A description of its contents, in human readable text

Charging/billing issues related to this element, in human readable text

Restrictions (e.g. copyright, proprietary) pertaining to use and access to this element, in
human readable text

Alternate names for this element

Generic names for this element text (e.g. a "geographicSubject" element might also be under
the generic name "subject")

Attribute combinations corresponding to this element

3.2.10.3.13 Sort-Details

Sort-Details is a description of the sorting capabilities supported by the server. There is one
record for each database.

ONISO Page 79

ANSI/NISO Z39.50-2003

Brief elements:
Database to which this sort description pertains

Non-brief elements:
For each sort key:
- A description
- Ifthe key is a record element, a specification of the element
- If the key is an attribute combination, a specification of that combination
- The type of key: character, numeric, structured
- Whether the key is case-sensitive

3.2.10.3.14 Processing-Info

Instructions, representing how the server believes the data should be processed by the client for
presentation to the user. Instructions are defined externally. For a given database and processing
context (access, search, retrieval, record-presentation, and record-handling) for which the server
offers processing information, there may be more than one set of instructions; these are
distinguished by name. Each set of instructions may be available in more than one abstract
syntax; these are distinguished by object identifier. Thus an Explain record of this type is
distinguished by database, processing context, name, and object identifier.

Brief elements:

Full name of the database to which this record pertains

The context for which this processing information is pertinent

A name for this processing information

An object identifier, for the abstract syntax of the externally defined instructions

Non-brief elements:

A description of the instructions, in human readable form

The machine processable instructions, externally defined (whose abstract syntax is identified
by the object identifier referenced above)

3.2.10.3.15 Variant-set-info

Variant-set-info is descriptive information about a variant set definition supported by the server;
classes, types, and values supported for a particular variant set. Support of a particular variant
set definition does not imply that the definition is supported for any specific database or element.
Brief elements:

The object identifier of the variant set definition
Its name

Non-brief elements:

A list of supported classes, including name and description; and for each, a list of supported
types, including name and description; and for each, a list of supported values.

ONISO Page 80

ANSI/NISO Z39.50-2003

3.2.10.3.16 Unit-info

Unit-info is descriptive information about a unit system definition supported by the server.

Brief elements:
The name of the unit system

Non-brief elements:

A description

A list of unit types, including name and description, and for each, a list of units, including
name and description

3.2.10.3.17 Category-list

Category-list is a list of the Explain categories supported by the server. There is one such record
for the Explain database. It consists of the information below, for each supported category.

Brief elements:

The search term used in conjunction with Use attribute of ExplainCategory to search for
records of this category

Note: The following need occur only if the server is supporting a category not defined in this
standard.

The original search term. (This is for information categories where the server is supporting a
revision of the original definition of a category.)

A description
An ASN.1 definition of the record for this category

3.2.11 Termination Facility

The Termination Facility consists of the single service, Close.

3.2.11.1 Close Service

The Close service allows either a client or server to abruptly terminate all active operations and to
initiate termination of the Z-association.

The Close service may be used only when version 3 is in force. If so, following initialization, at
any time until a Close request is either issued or received, either the client or server:

May issue a Close request, consider all active operations to be abruptly terminated, await a
Close response (discarding any intervening messages), and consider the Z-association
closed; and

Should be prepared to receive a Close request, consider all active operations to be abruptly
terminated, issue a Close response, and consider the Z-association closed.

ONISO Page 81

ANSI/NISO Z39.50-2003

Parameters of the Close Service

Parameter Name Request Response | Note Reference
Close-reason m m 321111
Diagnostic-Information 0 0 server only 3.211.1.2
Resource-report-format 0 client only 3.211.13
Resource-report 0 0 server only 321113
Other-information 0 0 3.211.14
Reference-id ia ia 34

3.2.11.1.1 Close-reason

This parameter indicates the reason why the client or server is closing the Z-association. Its
values are:

finished

shutdown

system problem

cost limits

resources

security violation

protocol error

lack of activity

unspecified

response to Close request

Note: Both the Close request and Close response map to the same protocol message (Close
APDVU). If both systems issue a Close request at the same time, each will receive the peer
message as a Close response (even though the message was not sent as such). This potential
ambiguity will not effect the correct operation of the protocol. However, for the case where the
message is indeed sent as a Close response, the last of the above listed statuses, "response to
Close request" is provided and may optionally be used.

3.2.11.1.2 Diagnostic-information

The server may include an optional text message, providing additional diagnostic information.

3.2.11.1.3 Resource-report-format and Resource-report

When the client issues a Close request: the client may include the parameter resource-report-
format to request that the server include a resource report (see 3.2.6.1.1) in the response. The
server's decision to include a resource report in the response (and the format) is unilateral: it may

ONISO Page 82

ANSI/NISO Z39.50-2003

include or omit a report regardless of whether the client included the parameter resource-report-
format.

When the server issues a Close request: the server may unilaterally include a resource report.

3.2.11.1.4 Other-information

This parameter may be used by the client or server for additional information, not specified by the
standard.

3.2.11.1.5 Reference-id

The parameter Reference-id may be included or omitted on a Close request or response from the
client.

The server should omit Reference-id on a Close request. On a Close response, if the server is
responding to a Close request that included Reference-id, the server may either include
Reference-id using the identical value, or it may omit the parameter. If the server is responding to
a Close request that did not include a Reference-id, the server should omit the parameter.

3.3 Message/Record Size and Segmentation
A "segment" is a message that is sent (or is in preparation for transmission) by the server as part
of an aggregate Present response, i.e. a Segment request or Present response.

Throughout Section 3.3, the term "record" is used as follows:

Unless otherwise qualified, it indicates a "response record," i.e., retrieval record or surrogate
diagnostic.

Except within Section 3.3.3, it refers to a "surrogate diagnostic record" if the record size
exceeds preferred-message-size.

"Record N" means "the response record corresponding to the database record identified by
result set entry N."

A record is considered to be a string of bytes (for the purpose of describing segmentation
procedures).

"Record size" refers to the size of a record, in bytes.

Except within Section 3.3.3, a set of records is said to "fit into a segment" if the sum of their sizes,
not including protocol control information, does not exceed Preferred-message-size. For the
Present operation, the server might be unable to fit the requested records in a single segment,
because of record or message size limitations. In that case, the server may perform segmentation
of the Present response (if segmentation is in effect) by sending multiple segments (Segment
requests followed by Present response).

Two levels of segmentation, level 1 and level 2, are subject to negotiation. If neither level is in
effect, the server response to a Present request consists of a simple Present response (a single
segment), which contains an integral number of records. If level 1 segmentation is in effect, the
server response to a Present request may consist of multiple segments (Segment requests
followed by a Present response), and each segment must contain an integral number of records,

ONISO Page 83

ANSI/NISO Z39.50-2003

i.e. records may not span segments. If level 2 segmentation is in effect, the server response to a
Present request may consist of multiple segments, and records may span segments.

3.3.1 Procedures When No Segmentation is in Effect

The procedures in this section (3.3.1) apply when no segmentation is in effect. (They apply not
only to a Present operation when no segmentation is in effect, but they also apply in general to a
Search operation, whether or not segmentation is in effect; a Search response is not subject to
segmentation.)

The server responds to a Present request with a simple Present response (or to a Search request
with a Search response), which contains an integral number of records. If the server is not able to
return all of the records requested, because of message size limitations, the server should fit as
many records as possible.

Assume that the server is attempting to return records M through N. If records M through N fit in
the response, then the server returns those records. Otherwise, the server returns records M
through P, where P is chosen such that records M through P fit in the response, but records M
through P+1 do not.

lllustration

Assume that the server is attempting to return records 1 through 10; records 1 through 6 fit in the
response, but retrieval records 1 through 7 will not fit.

The size of retrieval record 7, itself:

€) Does not exceed Preferred-message-size, or
(b) Exceeds Preferred-message-size, but does not exceed Exceptional-record-size, or
(c) Exceeds Exceptional-record-size.

In case (a), the server returns records 1 through 6. In case (b), except as noted below (see
"Exception"), the server substitutes a diagnostic record for retrieval record 7, indicating that the
record exceeds Preferred-message-size. In case (c) the server substitutes a diagnostic record for
retrieval record 7, indicating that the record exceeds Exceptional-record-size. If Exceptional-
record-size equals Preferred-message-size then there is no distinction between the meaning of
the two diagnostics.)

In case (b) or (c):

If the diagnostic record will not fit along with records 1 through 6, the server returns records 1
through 6. (Preferred-message-size must always be large enough to contain any diagnostic
record; thus a subsequent present request beginning with record 7 will retrieve the
diagnostic.)

Otherwise, the server inserts the diagnostic record and proceeds to attempt to fit records 8
through 10.

Exception

If a Present request specifies a single record (i.e. Number-of-records-requested equals 1) then if
the size of that retrieval record exceeds Preferred-message-size, but does not exceed

ONISO Page 84

ANSI/NISO Z39.50-2003

Exceptional-record-size, the server will return that single retrieval record. Note that this exception
applies only to a Present operation and not to a Search operation.

Thus in case (b), the client may subsequently retrieve retrieval record 7, by issuing a Present
request in which that record is the only record requested.

Note that the purpose of this distinction between Preferred-message-size and Exceptional-record-
size is to allow the transfer of normal length records to proceed in a routine fashion with
convenient buffer sizes, while also providing for the transfer of an occasional exceptionally large
retrieval record without requiring the client to continually allocate and hold local buffer space for
worst-case records. Note also that this intended purpose is defeated if the client routinely
requests a single record.

3.3.2 Level 1 Segmentation

When level 1 segmentation is in effect, the server may segment the aggregate Present response
into multiple segments (zero or more Segment requests followed by a Present response), each
consisting of integral records (i.e. records may not span segments). The procedures described in
this section (3.3.2) apply if level 1 segmentation is in effect.

Beginning with the first record requested and continuing with adjacent higher number records, the
server forms segments to contain the requested records. Each segment is sent as a Segment
request, except the last, which is sent as a Present response.

The number of segments must not exceed the value of the (optional) Present request parameter
Max-segment-count, if supplied.

If Max-segment-count is supplied, and its value is 1, then the procedures of 3.3.1 apply. Also, the
same exception as cited in 3.3.1 applies if a Present request has requested a single record.

Assume that the client requests result set records M through N.

Case A: M<N (i.e. more than one record requested).

1. Set P=M
2. If records P through N fit in a segment:

- Fitrecords P through N in the segment
- Gotostep3
Otherwise,

- Fitrecords P through Q, where Q (which is less than N) is such that records P
through Q fit in a segment, but records P through Q+1 do not

- If Max-segment-count is reached, go to step 3
- Send the segment as a Segment request
- Set P=Q+1

- Repeat step 2
3. Send the segment as a Present response.

ONISO Page 85

ANSI/NISO Z39.50-2003

Case B: M=N (i.e. a single record requested).

The server sends a simple Present response (a single segment). The size of the segment may
exceed Preferred-message-size. The segment contains the single requested retrieval record, or a
surrogate diagnostic record if the size of the record exceeds Exceptional-record-size.

[llustration

Assume the client has requested records 1 through 10.

1. If all ten records fit in a segment, the aggregate Present response consists of a Present
response including the requested records. Present-status is 'success' (all expected
response records available).

2. Suppose records 1 through 4 fit in a segment, but records 1 through 5 do not; records 5
through 9 fit in a segment but records 5 through 10 do not. (Assume the Present request
has specified a value of 3 or greater for the parameter Max-segment-count.) Then the
aggregate Present response consists of:

- A segment request including records 1 through 4,

- A segment request including records 5 through 9, and

- A Present response including record 10.

Present-status is 'success' (all expected response records available).

Note that the server is expected to pack as many records into a segment
as will fit; thus for example, the first segment would not consist of records
1 through 3, because records 1 through 4 will fit.

3. Assume the conditions in (2) are true, except that the Present request has specified a
value of 2 for the parameter Max-segment-count. Then the aggregate Present response
consists of:

- A Segment request including records 1 through 4, and

- A Present response including records 5 through 9.

Present-status is 'partial-2' (not all expected response records available,
because they will not all fit within the preferred message size).

3.3.3 Level 2 Segmentation

When level 2 segmentation is in effect, the server may segment the aggregate Present response
into multiple segments (as is the case for level 1 segmentation) and in addition, records may span
segments. The procedures described in this section (3.3.3) apply if level 2 segmentation is in
effect.

If a retrieval record will not fit in a segment (along with records already packed into the segment)

it may be segmented into multiple contiguous fragments (see 3.3.3.1) to be packed into
consecutive segments according to the procedures detailed in 3.3.3.2 and 3.3.3.3.

ONISO Page 86

ANSI/NISO Z39.50-2003

3.3.3.1 Fragments

A fragment is a proper sub string of a record (as noted above, within section 3.3.3 a record is
treated as a string of bytes). A particular instance of segmentation of a record results in a
sequence of two or more fragments whose concatenation (not including protocol control
information) is identical to the record. However, there may be different instances of segmentation
of a particular record, and the client cannot necessarily predict how a record will be segmented
into fragments by the server in a particular instance.

For the purpose of procedure description (3.3.3.3) a starting fragment is defined to be a fragment
that starts at the beginning of a record. An intermediate fragment is a fragment that neither starts
at the beginning nor ends at the end of a record. A final fragment is a fragment that ends at the
end of a record. An integral record (not segmented) is not a fragment.

The sum of the sizes of the records and record fragments in a segment, not including protocol
control information, must not exceed Max-segment-size (see 3.3.3.2).

3.3.3.2 Segment Size, Record Size, and Segment Count

If level 2 segmentation is in effect, the Present request may optionally include these three
parameters:

Max-segment-size The largest allowable segment. If included, overrides
Preferred-message-size (for this Present operation only).
If not included, Max-segment-size assumes the value
Preferred-message-size.

Max-record-size The largest allowable retrieval record within the
aggregate Present response. If included, it must equal or
exceed Max-segment-size. (If level 2 segmentation is in
effect, the parameter Exceptional-record-size that was
negotiated during initialization does not apply, whether
or not Max-record-size is included, unless the value of
Max-segment-count is 1.)

Max-segment-count The maximum number of segments the server may
include in the aggregate Present response. If its value is
1, no segmentation is applied for the operation, the
procedures of section 3.3.1 apply, and Max-record-size
should not be included.

If the latter two parameters are both included, Max-record-size must not exceed the product Max-
segment-size times Max-segment-count.

If Max-record-size but not Max-segment-count is included, the client should be prepared to
receive as many segments as necessary to retrieve the requested records.

If Max-segment-count is included (and its value is greater than 1), but Max-record-size is not, the

product Max-segment-size times Max-segment-count is the maximum record size for the
operation.

ONISO Page 87

ANSI/NISO Z39.50-2003

If the latter two parameters are both omitted the client should be prepared to receive arbitrarily
large records and an arbitrary number of segments.

3.3.3.3 Segmentation Procedures

The following procedures apply for level 2 segmentation. The server fits as many integral records
as possible into the first segment. If all of the requested records will fit, the segment is sent as a
simple Present response. Otherwise, in the space remaining within that segment the server fits a
starting fragment of the following record (if possible), and the segment is sent as a Segment
request. The server then fits the remainder of that record into the next segment (if possible; and if
not possible, sends Segment requests as necessary with intermediate fragments, and fits the
final fragment, if any, into the beginning of the next segment) and fills as many integral records as
possible within the space remaining within that segment. If the last of the requested records is
placed in the segment (or Max-segment-count is reached) the segment is sent as a Present
response. Otherwise the server continues to fill segments in this manner until the last of the
requested records is placed in a segment or Max-segment-count is reached, and sends each
segment as a Segment request except the last, which it sends as a Present response. These
procedures are stated more formally as follows:

Assume that the client requests records M through N. (Note that "Record" means "surrogate
diagnostic record" if the size of the record exceeds Max-record-size, or if the server is unable to
segment the record so that each fragment fits within a segment.)

1. Set R=M (begin preparation of first segment)

2. If record R fits in the current segment:

- Fitintegral records R through P, where P is the largest number (not exceeding N) so
that records R through P fit

- If P equals N, or if Max-segment-count is reached, go to step 8
- R=P+1
3. Note: Having reached this step, record R will not fit in the current segment.

If the Present request has included Max-segment-count and the server is unable to
determine whether record R will fit in the remainder of the aggregate response:

- Insert a surrogate diagnostic record, which in effect suggests that the client might
again attempt to retrieve the record, but without specifying a Max-segment-count

- Gotostep7

4. If record R will not fit in the remainder of the aggregate response, go to step 8
If record R will fit in the remainder of the aggregate response, but no starting fragment
will fit in the current segment:

Note: This condition precludes the possibility that the segment is empty;
see note preceding step 1.
- Transmit a Segment request (begin preparation of the next segment)

- Gotostep?2

6. Note: Having reached this step, Record R will fit in the remaining segments; it will not fit
within the current segment, but a starting fragment will fit in the current segment.

- Fit the largest possible starting fragment of record R and transmit a Segment request

- Fill as many complete segments as necessary (which may be zero) with intermediate
fragments of record R and send Segment requests

ONISO Page 88

ANSI/NISO Z39.50-2003

- Begin preparation of the next segment, first inserting the final fragment of record R

7. SetR=R+1

- IfRisless than or equal to N, go to step 2
8. Send a Present response.
Illustration

Assume the client has requested records 1 through 12. All records are 500 bytes, except record
5, which is 10,000 bytes. Max-segment-size is 3200.

1. Suppose record 5 consists of 10 elements, each 1000 bytes. The server is able to
segment record 5, but only at element boundaries; the server will not let the elements

span fragments.

Note: this means that the server may segment the record so that a fragment consists of
bytes M*1000+1 through (M+N)*1000, M= 0,1,9; N =1, 2, ..., 10-M; e.g. bytes 1-1000,
1-2000, 1-3000, 1000-2000, 1000-3000, 1000-4000, etc.

Suppose further that the server cannot segment any other records. The aggregate

Present response is as follows:

segment 1

segment 2

segment 3

segment 4

segment 5

segment 6

Segment request consisting of records 1 through 4, and
the first 1000 bytes of record 5 as a starting fragment.
Note: the size of the segment is 3000 bytes which is
less than the Max-segment-size of 3200; but the server
cannot fit another fragment in the segment because that
would cause the segment size to exceed the 3200-byte
maximum (the minimum fragment size is 1000 bytes).

Segment request consisting of bytes 1001 through 4000
of record 5 as an intermediate fragment

Segment request consisting of bytes 4001 through 7000
of record 5 as an intermediate fragment

Segment request consisting of bytes 7001 through
10,000 of record 5 as a final fragment

Segment request consisting of records 6 through 11

Present response consisting of record 12

2. Suppose further that the server can segment the smaller records into 100 byte fragments

(or multiples).
Segments 1 through 3 are as in case 1

segment 4

segment 5

segment 6

Segment request consisting of bytes 7001 through
10,000 of record 5 as a final fragment, and bytes 1
through 200 of record 6 as a starting fragment

Segment request consisting of bytes 201 through 500 of
record 6 as a final fragment, records 7 through 11, and
the first 400 bytes of record 12 as a starting fragment

Present response consisting of bytes 401 through 500 of
record 12 as a final fragment

ONISO Page 89

ANSI/NISO Z39.50-2003

3. Suppose the server can segment any of the records at arbitrary byte boundaries.

segment 1 Segment request consisting of records 1 through 4 and
the first 1200 bytes of record 5 as a starting fragment

segment 2 Segment request consisting of bytes 1201 through 4200
of record 5 as an intermediate fragment

segment 3 Segment request consisting of bytes 4201 through 7400
of record 5 as an intermediate fragment

segment 4 Segment request consisting of bytes 7401 through
10,000 of record 5 as a final fragment, record 6, and the
first 100 bytes of record 7 as a starting fragment

segment 5 Present response consisting of bytes 101 through 500 of
record 7 as a final fragment, and records 8 through 12

3.3.3.4 Segmentation and Access-or Resource-Control

A segmentation sequence may be interrupted by Access-control or Resource-control. A server
might send one or more segments and follow (prior to sending the Present Response) with either
an Access-Control request (for example because the next set of segments requires authorization)
or a Resource-Control request (for example indicating that the next set of segments will cost
more).

3.4 Operations and Reference-id

A request from the client of a particular operation type initiates an operation, which is terminated
by the respective response from the server. The following operation types are defined: Init,
Search, Present, Delete, Resource-report, Sort, Scan, Extended-services, and Duplicate-
detection. (Thus each client request type corresponds to an operation type with the exception of
the following request types: Trigger-resource-control and Close.) An operation consists of the
initiating request and the terminating response, along with any intervening Access-control and
Resource-control requests and responses, Trigger-resource-control requests, and Segment
requests. An operation is assigned a Reference-id by the client, the client includes the Reference-
id within the initiating request, and the same Reference-id must be included within each message
of the operation. Fox example, if the client sends a Search Request and includes a Reference-id
with value “123,” then the Search Response must also include that same reference id, “123.” If
'serial operations' is in effect, the Reference-id parameter may be omitted in the initiating request;
in that case the reference-id is considered null for that operation, and all other messages of that
operation must also omit the Reference-id parameter.

Any message sent from client to server or vice versa (i.e. any request or response defined by this
service definition) is part of an operation (identified by its Reference-id), with the following
exceptions:

A Close request or response is not part of any operation.
Note: A Close request or response may include a reference-id, according to the procedures
specified in 3.2.11.1.5.

If ‘concurrent operations' is in effect any Resource-control or Access-control request or
response which does not include a Reference-id is not part of an operation.

ONISO Page 90

ANSI/NISO Z39.50-2003

This standard does not assume any relationship between a given operation and any subsequent
operation even if the latter operation uses the same reference-id. This standard does not specify
the contents of the Reference-id parameter, nor its meaning, except to the extent that it is used to
refer to an operation. Reference-ids are always assigned by the client and have meaning only
within the client system. Since no semantics are attributed to the Reference-id, it has no implied
data type and can only be described as transparent binary data. (Its ASN.1 type is therefore
OCTET STRING.)

Even though the client and server should supply reference-ids as described above, in the case
where an incorrect reference-id is supplied (and so long as ‘serial operations’ is in effect), the
receiver of the incorrect reference-id may simply ignore it, or may declare a protocol error (i.e.
issue a Close with close reason 'protocol error'), and this standard takes no position on which
choice is better. An example of an incorrect reference-id would be when the client sends a
Search Request with a reference-id and the server responds with a reference-id of a different
value, or no reference-id at all. Another example: the client sends a Search Request, the server
sends an Access-control Request (with the correct reference-id) and the client sends an Access-
control Response with a different reference-id.

3.5 Concurrent Operations

If ‘concurrent operations' is in effect, the Reference-id parameter is mandatory in an initiating
request (however, see note), and the client may initiate multiple concurrent operations, each
identified by a different reference-id.

Note: The Reference-id parameter is always optional in an Init request; ‘concurrent operations'
does not take effect until negotiation is complete, and is thus not in effect during an Init operation.

Once an operation is initiated, until that operation is terminated, another operation may not be
initiated with the same reference-id. This standard does not specify the order in which concurrent
operations are processed at the server; the server may process concurrent operations in any
manner it chooses.

Example:

The client may issue a Search request using Reference-id "100," and then issue a second Search
request using Reference-id "101" before receiving the Search response from the first Search
request. There would then be two concurrent operations. Receipt by the client of the response
corresponding to the second Search request (identified by Reference-id "101") would terminate
the second operation, and that might occur before termination of the first operation (identified by
Reference-id "100"). The client might then issue a Present request (against the result set created
by the second operation), initiating another operation. In that case, the client must supply a
Reference-id other than "100" (because there is an active operation with that Reference-id). The
new Reference-id could (but need not) be "101"; if it is, the server may not assume any implied
relationship between this new operation and the previous operation which used Reference-id
"101."

No operation may be initiated while an Init operation is in progress. No operation may be initiated
within a Z-association after a Close request has been sent or received.

ONISO Page 91

ANSI/NISO Z39.50-2003

All result sets are, in principle, available to any operation. It is possible that two or more
concurrent operations will attempt to reference the same result set. This standard does not
specify what happens in that circumstance. The client should not initiate concurrent Search
operations with the same value of Result-set-id.

Other than the restriction cited above (that when the client uses a Reference-id to initiate an
operation, until that operation is terminated it may not use that Reference-id to initiate another
operation) there are no restrictions on the re-use or management of Reference-ids by the client.
The client might re-cycle Reference-ids randomly among users, or it may manage local threads
by assigning different Reference-ids to end-users. The server is not required to know how the
client manages Reference-ids, or in particular, that the client is using Reference-ids to distinguish
different users. There is no requirement for the server to have any knowledge of multiple end
users at the client, the server interacts only with the (single) client.

3.6 Composition Specification

For each database supported the server defines one or more schemas (see 3.1.5), and
designates one as the default schema. For each schema, the server designates one or more
element specification identifiers.

An element specification identifier is the object identifier of an element specification format (a
structure used to express an element specification) or an element set name. The latter is a
primitive name. An element specification is an instance of an element specification format, or an
element set name.

For the default schema, at least one of the element specification identifiers must be an element
set name, and the server designates one as the default element set name for the database.

Note: The server designates this information either via the Explain facility, or through some
mechanism outside of the standard.

For each record to be returned in a Search or aggregate Present response, the server applies an
abstract record structure (defined by a schema for the database to which that record belongs) to
form an abstract database record, to which the server applies an element specification to form
another instance of the abstract database record (the latter might be a null transformation), to
which the server applies a record syntax, to form a retrieval record.

If the client includes the parameter Comp-spec (in a Present request) the procedures of 3.6.1
apply. For a Search operation, or a Present operation when the parameter Comp-spec is omitted,
the default schema is assumed for each record, and the procedures of 3.6.2 apply.

3.6.1 Comp-spec Specified

The Present request parameter Comp-spec includes a set of one or more pairs of a database
name and associated composition specification. Each composition specification may include a
schema identifier (or if not, the default schema for the database is assumed) and an element
specification. For each record to be returned in the aggregate Present response:

If the database to which the record belongs is specified (as a component of one of the pairs)
then the server forms an abstract database record by applying the corresponding
composition specification (i.e. by first applying the abstract record structure, defined by the

ONISO Page 92

ANSI/NISO Z39.50-2003

schema, to the database record to form an abstract database record, and then applying the
element specification; where the schema and element specification are from the composition
specification), if it is able to do so.

Otherwise, the server forms an abstract database record by applying the abstract record
structure defined by the default schema, and default element set name, for the database to
which the record belongs.

The parameter Comp-spec may alternatively consist of a single composition specification with no
database specified. In that case, for each record to be returned, if the server is able to form an
abstract database record according to that composition specification, it does so. If not, an
abstract database record is composed according to the default schema and default element set
name for the database to which the record belongs.

The server applies a record syntax (which may be included in the composition specification or
within the parameter Preferred-record-syntax) to the resulting abstract database record, to form a
retrieval record.

3.6.2 Comp-spec Omitted

When requesting the retrieval of a set of records from a result set, if the parameter Comp-spec is
omitted, the procedures of this section apply.

Notes:

1. This is always the case on a Search request, because the parameter Comp-spec is not
included in the definition of the Search request.

2. This is always the case when version 2 is in force, because the parameter Comp-spec is

not defined in version 2.

The Search request parameters Small-set-element-set-names and Medium-set-element-set-
names, and the Present request parameter Element-set-names, take the form of a set of one or
more pairs of a database name and associated element set name. For each record to be returned
in the Search or aggregate Present response, the server first applies the abstract record structure
defined by the default schema for the database to which the record belongs, to form an abstract
database record, and then applies an element set name, as follows:

If the database to which the record belongs is specified (as a component of one of the pairs),
and if the corresponding element set name is valid for the default schema for the database,
then the server applies that element set name.

If not, the server applies the default element set name for the database.

Each of these parameters may alternatively consist of a single element set name with no
database specified. In that case, for each record to be returned, if the element set name is valid
for the default schema for the database to which the record belongs, the server applies that
element set name; if not, the server applies the default element set name for the database.

A server must always recognize the character string "F" as an element set name to mean "full";

when it is applied to an abstract database record, it results in the same abstract database record
(i.e. a null transformation).

ONISO Page 93

ANSI/NISO Z39.50-2003

A server must always recognize the character string "B" as an element set name to mean "brief"
record. This standard does not define the meaning of "brief." Unless the client knows the server's
definition of "brief" for a given schema, it should not assume that any particular elements are
included.

Element set names are case-insensitive. (See the discussion of case-sensitivity of database
names and result set names in 3.2.2.1.3. Element set names, as database names, are often
passed around outside of the protocol, for example, in profiles.)

The client may specify a "preferred-record-syntax," which the server applies (to the abstract
database record formed by the application of the element set name) to form a retrieval record. If
the client does not specify a preferred-record-syntax, the server may select one (see 3.2.2.1.5).

3.6.3 Record Syntax

For each record to be returned in a Search or aggregate Present response, the element set
name, or the schema and element specification from the composition specification, results in an
abstract database record, as described above. To that abstract database record, the server
applies a record syntax, indicated as described above. The term "record syntax" has the following
meaning:

When specified by the client (either as the value of Preferred-record-syntax or within a
composition specification), it takes the form of an OID and refers to an abstract syntax
(paired, or to be paired by the server, with a transfer syntax) that the client requests the
server use for retrieval records.

When specified by the server, it takes the form of an OID or p-context accompanying a
retrieval record in a Search or Present response, and it refers to an abstract syntax paired
with a transfer syntax.

When Server cannot Supply a Record According to Requested Syntax

When Preferred-record-syntax is supplied (and Comp-spec is not supplied, or if it is supplied, no
record syntax ids are included within) and a particular record is not available in the requested
syntax , the server should return a surrogate diagnostic such as 238: "Record not available in
reguested syntax", or a variation such as 1070: "user not authorized to receive record(s) in
requested syntax" (used as a surrogate). The server may fail the request in the case where none
of the requested records is available in the requested syntax (227: "No data available in
requested record syntax "), or when the syntax is not supported (239: "Record syntax not
supported"), or user is not authorized (1070, used as a non-surrogate). In any case, whenever
preferredRecordSyntax is supplied, the server should not supply any records in any other syntax.

When Requested Syntax is not Supplied

When Preferred-record-syntax is not supplied (and Comp-spec is not supplied, or if it is supplied,
no record syntax ids are included within) the server may interpret the omission to mean that the
client wishes the server to select an appropriate syntax (which may be different for different
record). However the server is free to treat this case as it sees fit; it may:

Fail the request (with diagnostic 1071: "preferredRecordSyntax not supplied" used as a
non-surrogate, diagnostic; or 1069: "No syntaxes available for this request”);

Select a syntax for some records and decline to select a syntax for others (with diagnostic
1071, used as a surrogate diagnostic); or

ONISO Page 94

ANSI/NISO Z39.50-2003

Select a syntax for each record.

3.7 Type-1 and Type-101 Queries

This section specifies procedures when Query-type is 1 (or 101; see Note 2 below). Type-1 is the
"Reverse Polish Notation" (RPN) query. It has the following structure:

RPN-Query ::= Argument | Argument + Argument + Operator
Argument = Operand | RPN-Query

operand = AttributeList + Term | ResultSetld | Restriction
Restriction ::= ResultSetld + AttributeList

operator = AND | OR | AND-NOT | Prox

The notation above is used as follows:

= means"is defined as"
| means "or"
+ means "followed by", and + has precedence over | (i.e. + is evaluated before |).

1. For type-1, the Prox operator and the Restriction operand are defined for version 3 only.
When version 2 is in effect, it is a protocol error to include either the Prox operator or
Restriction operand in a type-1 query.

2. The type-101 query is defined as identical to the type-1 query, with the exception that the
Prox operator and Restriction operand are defined not only for version 3, but for version 2
as well. Thus the definition of the type-101 query is independent of version.

A Z39.50-conforming server must support the type-1 query, but support of the type-1 query does
not imply support of any of the defined operators or operands.

The server designates what query types it supports, and which operators and operands.

Note: The server designates this information either through the Explain facility or through some
mechanism outside of the standard.

If the server claims support for the Prox operator, the server should also designate whether it
supports the extended result set model for proximity (the extended result set model for searching
as described in 3.1.6 and its specialization for proximity as described in 3.7.2.2). If the server
claims support for the Restriction operand, then it must also support the extended result set
model for restriction (the extended result set model for searching and its specialization for
restriction as described in 3.7.3).

Note: Only in certain circumstances (detailed below) does support of the Prox operator require

support of the extended result set model for proximity. However, support of the Restriction
operand always requires support of the extended result set model for Restriction.

ONISO Page 95

ANSI/NISO Z39.50-2003

3.7.1 Representation and Evaluation of the Type-1 and Type-101 Queries

At the client, the query is represented by a tree. Each subtree represents an operand, either a
simple operand or a complex operand. Each leaf node represents a simple operand:
Result-set-id, AttributeList+ Term, or Restriction. Each non-leaf node represents a complex
operand: a subtree whose root is an operator, and which contains two subtrees, a left operand
and a right operand.

The client traverses the tree according to a left post-order traversal, to produce a sequence of
(simple) operands and operators, which is transmitted to the server.

At the server, evaluation of the sequence of operands and operators is illustrated by the use of a
stack. Whenever an operand is encountered, it is put on the stack. Whenever an operator is
encountered, the last two objects that have been put on the stack are pulled off and the operator
is applied as follows.

Each operand represents a set of database records. Each is one of the following:

€) AttributeList+term -- In which case it represents the set of database records obtained by
evaluating the specified attribute-set and term against the collection of databases
specified in the Search request.

(b) ResultSetld -- In which case it represents the set of database records represented by the
transient result set identified by ResultSetld.
(c) Restriction operand (ResultSetld+AttributeList): In which case it represents the set of

database records represented by the result set identified by ResultSetld, restricted by the
specified attribute set (see 3.7.3).

Note: If the Restriction operand occurs the server must support the extended result set
model for restriction; otherwise the query is in error.

(d) An intermediate result set (resulting from a previous evaluation placed on the stack) -- In
which case it represents the records identified by that result set.

Let S1 and S2 be the sets represented by the left and right operand respectively. Let S be
defined as follows:
If the operator is AND, S is the intersection of S1 and S2
If the operator is OR, S is the union of S1 and S2
If the operator is AND-NOT, S is the set of elements in S1 which are not in S2
If the operator is Prox:
- If both operands are of form (a) S is the subset of records in the set (S1 AND S2) for
which A ProxTest B is true (see 3.7.2.1) where A and B are the two operands.
- Otherwise:

The server must support the extended result set model for proximity; or
else the query is in error.

Let R1 and R2 be result sets representing the sets S1 and S2 (i.e. each
is either: the result set specified by the corresponding operand, if it was
of form (b), or the hypothetical result set representing the set of records
represented by that operand, otherwise.

- In either case, both R1 and R2 are assumed to conform to the extended result set
model for proximity.)

ONISO Page 96

ANSI/NISO Z39.50-2003

- Each entry in R1 and R2 contain positional information, in the form of position
vectors. For each record represented by both R1 and R2, consider every ordered pair
consisting of a position vector associated with the record as represented in R1 and a
position vector associated with the record as represented in R2. For each pair that
qualifies according to the ProxTest:

The record is qualified into the set S; and
A position vector is created for that record as represented in the resultant
set, composed from that ordered pair.

An intermediate result set is created, which represents the records in the set S, and is put on the
stack. When evaluation of the query is complete (i.e. all query-terms have been processed) there
will be one object remaining on the stack (otherwise the query is in error), representing a set of
database records, which is the result of the query.

Example

Suppose databaseName = A; resultSetName = 1; query = ‘dog
query specifies

. Subsequently, a follow-on

databaseName = B; resultSetName = 2; query =" ‘dog’ OR ‘resultSet 1'*“. That is, the second
query asks for records from database B containing the word "dog" or records from result set 1
(result set 1 contains records from database A). The latter search, though it pertains only to
database B (and there are no records from result set 1 that belong to database B) should
nonetheless include records from A. (See 3.7.1 (a) and (b). Note that when an operand is of the
form AttributesPlusTerm, it is evaluated against the specified databases, but when an operand is
of the form resultSetName, it is not.)

3.7.2 Proximity

3.7.2.1 The Proximity Test

The proximity test, ProxTest, includes a Distance, Relation, Unit, and two boolean flags: Ordered
and Exclusion.

Distance: Difference between the ordinal positional values of the two operands. (E.g., if unit
is 'paragraph,’ distance of zero means "same paragraph”.) Distance is never negative.

Relation: LessThan, LessThanOrEqual, Equal, GreaterThanOrEqual, GreaterThan, or
NotEqual.

Unit: Character, Word, Sentence, Paragraph, Section, Chapter, Document, Element,
Subelement, ElementType, Byte, or a privately defined unit.

Ordered flag: If set, the test is for "right" proximity only (the left ordinal must not exceed the
right ordinal and Distance is compared with the difference between the right and left ordinals);
otherwise, the test is for "right" or "left" proximity. (Distance is compared with the absolute
value of the difference between the left and right ordinals.)

Exclusion flag: If set, "not" is to be applied to the operation (for example if the test with

Exclusion flag 'off' is "'cat’ within 5 words of 'hat'," then the same test with Exclusion flag ‘on’
is "'cat' not within 5 words of ‘hat™).

Example:

ONISO Page 97

ANSI/NISO Z39.50-2003

Suppose A and B respectively specify "personal name = 'McGraw,J.' " and "personal name =
'Stengel, C."," and:

Distance is 0,

Relation is 'equal,’
Proximity-unit is ‘paragraph’,
Ordered flag is 'false’,
Exclusion flag is 'false'.

Then the result is the set of records in which both of the personal names occur within the same
paragraph. Using the same example, if the Exclusion flag is set to 'true," the result is the set of
records in which the two personal names never both occur within the same paragraph.

If the Ordered flag is set to 'true' (and Exclusion flag to 'false') then the result is the set of records
in which the personal name 'McGraw, J." occurs within the same paragraph as, but before, the
personal name 'Stengel, C.".

If distance is instead 1 (‘ordered' and 'exclusion’ flag ‘false’) the result is the set of records in
which the two personal names occur in adjacent paragraphs. If, in addition, Relation-type is
'less-than-or-equal’ the result is the set of records in which the two names occur within the same
or adjacent paragraphs.

3.7.2.2 Extended Result Set Model for Proximity

In the extended result set model for proximity, the server maintains positional information, in the
form of one or more position vectors, associated with each record represented by the result set,
which may be used in a proximity operation as a surrogate for the search that created the result
set.

Example:

Let R1 and R2 be result sets produced by type-1 query searches on the terms 'cat' and 'hat'. In
the extended result set model for proximity, the server maintains sufficient information associated
with each entry in R1 and with each entry in R2 so that the proximity operation "R1 near R2"
would be a result set equivalent to the result set produced by the proximity operation "cat near
hat" ("near" is used here informally to refer to a proximity test).

The manner in which the server maintains this information is not prescribed by the standard.
Appendix ERS (non-normative) provides examples.

An implementation may support proximity without supporting the extended result set model for

proximity. For example, it might support “"cat near hat" and not support "R1 near R2" (where R1
and R2 are result sets representing ‘cat' and 'hat' respectively).

3.7.3 Restriction and the Extended Result Set Mode |

The Restriction operand specifies a result-set-id and a set of attributes, and it represents the set
of database records identified by the specified result set, restricted by the specified attributes.

Example:

ONISO Page 98

ANSI/NISO Z39.50-2003

Let R be the result set produced by a search on the term 'cat,’ representing three records:

1. Where 'cat' occurs in the title,
2. Where 'cat’ occurs in the title and as an author, and
3. Where ‘cat’ occurs in the title, as an author, and subject.

Then "R restricted to ‘author™ might produce the result set consisting of the entries 2 and 3 of R.

In the extended result set model for restriction, the server maintains information associated with
each record represented by the result set, that may be used in the evaluation of a restriction
operand as a surrogate for the search that created the result set. The manner in which the server
maintains this information is not prescribed by the standard. Appendix ERS (non-normative)
provides examples.

If an implementation supports result set restriction, then it implicitly supports the extended result
set model for restriction (the model is implicit in the semantics). However, supporting the
extended model for restriction is an abstract concept for which there is no conformance
requirement. It simply means that the server maintains some information (necessary to carry out
the operation) and the manner in which the information is maintained is not prescribed by this
standard.

ONISO Page 99

ANSI/NISO Z39.50-2003

4. Protocol Specification

This section (4) specifies the formats, procedures, and conformance requirements for the 239.50
protocol, governing the transfer of information between a Z39.50 client/server pair. Sections 4.1
and 4.2 respectively describe the formats and rules for exchange of Z39.50 application protocol
data units (APDUSs). An APDU is a unit of information, transferred between client and server,
whose format is specified by the Z39.50 protocol, consisting of application-protocol-information
and possibly application-user-data. Sections 4.3 and 4.4 respectively describe rules for
extensibility and conformance requirements.

4.1 Abstract Syntax and ASN.1 Specification of 2Z39.50 APDUs

This section describes the abstract syntax of the Z39.50 APDUs (Application Protocol Data
Units). An APDU is a unit of information transferred between a client and server. The abstract
syntax is is described using the ASN.1 notation defined in ISO 8824.

The comments included within the ASN.1 specification are part of the standard.

See Appendix 18.

4.2 Protocol Errors

Syntactical errors in received APDUs are considered to be protocol errors (with the following
exceptions: Unknown data elements, and unknown options within the Options data element, will
be ignored on received Init APDUS). Incorrectly formatted APDUs or APDUs with invalid data are
also considered to be protocol errors, as are incorrectly sequenced messages. Additional
conditions that may be treated as protocol errors are described in 4.4.2.2.

This standard does not specify the actions to be taken upon detection of protocol errors. A
system detecting a protocol error may:

o0 issue a Close request, with close-reason ‘protocol error’ (when version 3 is in force);
o Terminate the connection; or

o lIgnore the error.

4.3 Encapsulation

Z39.50 APDUs may be included, or encapsulated, within other APDUs. The rules for
encapsulation are as follows.

1. Encapsulation is negotiated during initialization. Option bit 15 is designated. If the client
sets option bit 15 in the Init request, then:

- The client proposes that "encapsulation be in effect" for the Z-association (or limited

ONISO Page 100

ANSI/NISO Z39.50-2003

to the Init operation if version 2 is proposed; see rule 5 below).

- The Init request may also (but need not) include one or more APDUs as described in
2.

- If the server also sets option bit 15, then encapsulation is in effect for the
Z-association (or limited to the Init operation, if version 2 is negotiated). In that case,
if the Init request had included encapsulated APDUSs, the server's behavior (as
concerns the Init response) is as described below.

- If the server does not set option bit 15, encapsulation is not in effect. (If the server
does not even recognize option bit 15, it will ignore it and not set the bit in the
response, as per the general rules for negotiation.) In this case if the server includes
information that appears to be encapsulated APDUSs in the Init response, the client
should not assume that the information is encapsulated APDUSs, and this
specification does not prescribe client behavior in this situation.

If encapsulation is in effect, then within an operation-initiating APDU the client may
include, within otherinfo (or, if the APDU is Init, within the userIinfo parameter using
Userinfo-1; see Appendix USR) to simulate OtherInfo; (see Use of Init Parameters for
User Information in Appendix USR), one or more APDUSs, including any
operation-initiating APDU (excluding Init), optionally followed by Close. These are
referred to as "encapsulated APDUSs".

The first APDU in this chain of nested APDUSs (i.e. the one that is not encapsulated in any
other) is called the “base APDU".

The first encapsulated PDU is included in the otherinfo parameter of the base PDU (or in
the userinfo parameter, if the base APDU is Init). The next encapsulated APDU is
included in the otherinfo parameter of the first encapsulated APDU, and so on. Each
encapsulated APDU is included in otherinfo as CHOICE externallyDefinedInfo, where the
oid for the external is 1.2.840.10003.2.1 (the oid for Z39.50 APDUS).

There may be at most a single occurrence of an encapsulated APDU within the base
APDU, and at most a single occurrence of an encapsulated APDU within an
encapsulated APDU (thus arbitrary nesting is permitted, but multiple threads are not).
When this is not the case, the prescribed behavior is not defined by the protocol.

The use of the otherinfo and/or userinfo parameter is specified in order to support
encapsulation within version 2 or 3. In a future version of the protocol, there might be
explicit encapsulation parameters in certain APDUSs.

For version 2, encapsulation may be supported only within the Init operation. Thus, when
version 2 is negotiated, encapsulation may also be negotiated, but for use only within Init.

When the client includes encapsulated APDUs the intent is that the server execute the
APDUs serially in the order that they are nested (from shallowest to most deeply nested),
and include APDU responses similarly nested in the APDU response to the base APDU,
and formatted in the manner described in (2), that is, with each encapsulated APDU
included in otherinfo as CHOICE externallyDefinedInfo, where the oid for the external is
1.2.840.10003.2.1.

If encapsulation is in effect, the server may not simply ignore encapsulated APDUSs. The
server may choose not to execute encapsulated APDUSs, but if so, must include in the
response to the base APDU an appropriate diagnostic (see 10), for example: "this
specific sequence of APDUs is not supported".

Based on pre-screening analysis, the server may decide to execute neither the base
APDU nor any encapsulated APDUSs, for example in the case where in the server's

ONISO Page 101

10.

11.

12.

ANSI/NISO Z39.50-2003

opinion the client intent was that if the server did not expect to be able to execute the full
sequence of APDUSs, then it should not attempt to execute any of them. Similarly, in this
case the server should include in the response to the base APDU an appropriate
diagnostic (see 10).

If encapsulation is in effect, the server may choose to execute some but not all of a
sequence of nested APDUSs. In that case it should not execute any encapsulated APDU
following one that it chose not to execute (and similarly should include an appropriate
diagnostic in the base-APDU response, see 10). Thus if there are N encapsulated
APDUSs, the server will always execute either none, or the first M APDUs (M less than or
equal to N). The server should also not execute any APDUSs following a APDU that it
attempted to execute but execution failed.

The server may use the General Diagnostic Container format (see Appendix DIAG) to
supply diagnostics in these cases described in 7, 8, and 9.

Access-control and resource-control apply to the operation initiated by the base APDU,
from a modeling perspective. However, as a practical matter, Access-control and
Resource-control formats may be developed to allow a server to indicate to what specific
encapsulated APDU the Access-control or Resource-control request pertains. Similarly,
for trigger-resource-control: the client might send a base APDU with several APDUs
nested, and later send a trigger-resource-control request. From a modeling perspective it
applies to the base APDU. But the request could actually be asking (based on the
report-id requested) "how far into the sequence are you?" and subsequently the client
might issue a second trigger request specific to the embedded request, which (again,
from an operation model perspective) would still apply to the base APDU.

Encapsulation is not intended to support segmentation.

4.4 Conformance

A system claiming to implement the procedures in this standard shall comply with the
conformance requirements in 4.4.1. These requirements are elaborated in 4.4.2.

4.4.1 General Conformance Requirements

The system shall:

@)
(b)
(©
(d)
(e)
()
(9)

Act in the role of client or server

Support the Init, Search, and Present services. See 4.4.2.2.1

Support the syntax in 4.1

Support the Type-1 Query. See 4.4.2.2.2

Support (at minimum) version 2 of the protocol

Follow the procedures specified in sections 3 and 4

Assign values to APDU data elements according to the procedures of sections 3 and 4.1

4.4.2 Specific Conformance Requirements

4.4.2.1 provides a table of Z39.50 features for which 4.4.2.2 specifies conformance requirements.
In particular, conformance requirements are described as they pertain to version 2 and version 3
respectively.

ONISO Page 102

4.4.2.1 739.50 Features

The following table of Z39.50 features indicates the applicable protocol version (2 or 3), a
reference to a description of the feature, and a reference to the section within 4.4.2.2 that
describes conformance requirements for the feature. The "item" column is used by the sections
within 4.4.2.2 to refer back to the table.

ANSI/NISO Z39.50-2003

Item Feature Version Reference Conformance
1 Init Service V2and V3 3211 44221
2 Search Service V2 and V3 3221 44221

Query type-1 V2 and V3 3.7 44222
Multiple attribute sets V3 Note 1 44223
Multiple data types for search V3 Note 2 44223
term
6 Complex attribute values V3 Note 3 44223
7 Result set restriction V3 3.7 44223
8 Proximity V3 3.7.2 44224
9 Query type-101 V2 and V3 3.7 44224
10 Query types 0, 2, 100 V2 and V3 32211 44224
11 Query type 102 V3 3.2.2.1.1 4.4.2.2.5
12 Additional-search-information V3 322112 44226
parameter in Search request and
response
13 Named result sets V2 and V3 3.2.2.13 4.4.2.2.23
14 Present Service V2 and V3 3231 44221
15 Additional-ranges and Comp-spec V3 3.23.1.2, 44227
parameters on Present request 3.2.3.1.6
16 Max- segment-count, -segment-size, V3 3.23.1.7 44228
-record-size parameters on Present
request
17 Diagnostic format -- default form V2 and V3 Note 4 44229
18 Diagnostic format -- external form V3 Note 4 44229
19 addinfo type VisibleString V2, V3 Note 5 4.42.2.10
20 addinfo type InternationalString V3 Note 5 4.4.2.2.10
21 Multiple non-surrogates in Search or V3 Note 6 442211
Present response
21A String identifier for schema Note 10 442230
V3 (2001
only)

ONISO

Page 103

ANSI/NISO Z39.50-2003

Item Feature Version Reference Conformance
23 Level-1 segmentation V3 3.3.2 442212
24 Level-2 segmentation V3 3.3.3 442212
26 failure-10 value of Delete-list-status V3 32414 442215

on Delete response
21 Access-control Service Vzand V3 3251 442214
28 Security-challenge-response and V3 Note 7 4.422.16
diagnostic in Access-control
response
29 Resource-control Service V2and V3 326.1 442214
30 Trigger-resource-control V2and V3 326.2 442213
Service
31 Resource-report Service V2and V3 3263 442213
32 Op-id parameter of Resource-report- V3 3.26.3.2 442217
request
33 failure-5 and failure-6 values of V3 3.2.6.3.3 442218
Resource-report-status in Resource-
report response
341 Result-count parameter of Sort V2 and V3 3.27.17 4.4.2.2.26
Response
35 Scan Service V2 and V3 3281 442213
36 Extended-Services Service Vzand V3 3291 442213
37 Close Service V3 32111 442219
38 Explain facility V2 and V3 3.2.10 4.4.2.2.20
39 Other-information (in a request or V3 Note 8 44226
response other than Scan, Sort, or
Extended Services)
40 Other-information in Scan, Sort, and V2 and V3 Note 8 442221
ES
41 Concurrent Operations V3 35 4.4.2.2.22
42 InternationalString full use of V3 Note 9 4.4.2.2.24

ONISO

Page 104

ANSI/NISO Z39.50-2003

Item

Feature Version Reference Conformance

GeneralString repertoire

43

Reference Id V2 and V3 3.4 4.4.2.2.25

44

Duplicate Detection Service V2 and V3 3.2.12 442213

45

Negotiation Model V2 and V3 Appendix 4.4.2.2.27
NEGO

46

Query type 104 V2 and V3 3.22.1.1 4.42.2.28

47

Encapsulation V2 and V3 4.2.4 4.4.2.2.29

Notes:

10.

In version 2 a type-1 query includes a single, global attribute set id, which identifies an
attribute set definition that pertains to all of the attributes within the query. In version 3 a
type-1 query also includes a global attribute set id, but in addition, each attribute within
the query may also be qualified with an attribute set id (which, If included, overrides the
global attribute set id).

In version 2 a search term must be of ASN.1 type OCTET STRING. In version 3 it may
be any of the following: OCTET STRING, INTEGER, InternationalString, OBJECT
IDENTIFIER, GeneralizedTime, EXTERNAL, IntUnit, or NULL.

In version 2, in a type-1 query, an attribute value must be numeric (i.e. ASN.1 type
INTEGER). In version 3, an attribute value may be numeric or ‘complex’. The complex
form may include multiple values, each either numeric or character string, and a semantic
action indicator (corresponding to some semantic action defined within the attribute set
definition).

See introductory text of Appendix DIAG.

In version 2, when using default diagnostic format, the addinfo parameter must be ASN.1
type VisibleString. In version 3 it may be type InternationalString.

In version 2, a Search or Present response may include at most a single non-surrogate
diagnostic record. In version 3 a Search or Present response may include multiple non-
surrogate diagnostic records. (Responses other than Search or Present that include
diagnostics may include multiple non-surrogate diagnostics regardless of version.)

In version 2, in the Access control response, securityChallengeResponse must occur,
and no diagnostic may occur. In version 3, securityChallengeResponse may be omitted,
if the parameter 'diagnostic' is present.

In version 2, the parameter otherinformation may be used only in Scan, Sort, and
Extended Services requests and responses. In version 3 it may be used in any request or
response.

See definition of InternationalString in ASN.1 for APDUs.

The Z39.50 Present request may include a schema identifier allowing the client to
request that records be supplied according to a specific schema. In Z39.50-1995 the
identifier must be an ISO object identifer (OID), and it is assumed that the schema is a
GRS-1 compatible schema (i.e. that the record syntax will be GRS-1). Z39.50-2003
allows the identifier to be a string (or an OID).

ONISO Page 105

ANSI/NISO Z39.50-2003

4.4.2.2 Detailed Requirements

4.4.2.2.1 Init, Search, and Present Services

(Seeitems 1, 2 and 14 above.)
A system must support the Init, Search, and Present services.

This means that a client must be capable of sending Init, Search, and Present requests and
receiving the respective responses. A server must respond properly to Init, Search, and Present
requests with respective responses.

A client may indicate (via option bits) during initialization that it does not intend to utilize the
Present service during the Z-association; this does not constitute non-conformance. If, however,
a client indicates that it does intend to utilize the Present service, and the server refuses, this
does constitute non-conformance on the part of the server.

This requirement is independent of version.

4.4.2.2.2 Type-1 Query

(See item 3 above.)

A client must be capable of formulating a type-1 query within a Search request, and a server
should expect to receive a type-1 query.

A client or server may support other query types. If the client fails to send a type-1 query during a
Z-association, this does not constitute non-conformance on the part of the client. If, however, the
client does send a type-1 query and the server responds with a diagnostic indicating "query type

not supported" this does constitute non-conformance on the part of the server.

This requirement does not mean that any specific feature of the type-1 query must be supported.
A server that receives a type-1 query that conforms to the type-1 query syntax but which includes
a feature that it does not support must not treat this condition as a protocol error (but instead
should return an appropriate diagnostic, however, that diagnostic must not indicate "query type
not supported").

This requirement is independent of version.

4.4.2.2.3 Multiple Attribute Sets, Multiple Data Types for Search Term, Complex
Attribute Values, Result Set Restriction, and Proximity

(Seeitems 4, 5, 6, 7, and 8 above.)

For version 2, the client may not use any of these features in a type-1 query. If server receives a
type-1 query with any of these features, it may treat this condition as a protocol error.

For version 3, the client may but is not required to use any of these features in a type-1 query.

The server should expect type-1 queries to include any or all of these features, but is not required
to support any of these features. If the server receives a type-1 query which includes any of these

ONISO Page 106

ANSI/NISO Z39.50-2003

feature that it does not support, it must not treat this condition as a protocol error (but rather
should return an appropriate diagnostic).

4.4.2.2.4 Query Types 0, 2, 100, and 101

(See items 9 and 10 above.)

A client is not required to support queries of any of these types. A server should expect to
receive, but need not support queries of these types. If a server receives a query of one of these
types that it does not support it must not treat this condition as a protocol error but instead should
return a diagnostic indicating that the query type is not supported.

This requirement is independent of version.

4.4.2.2.5 Query Type-102

(See item 11 above.)

For version 2, a client may not use the type-102 query. If a server receives a type-102 query it
may treat this condition as a protocol error.

For version 3, a client may, but need not support the type-102 query. A server should expect to
receive, but need not support, type-102 queries; if it receives a type-102 query it must not treat
this condition as a protocol error.

Note: Z39.50 lists type-102 as a valid query type (for version 3) but does not include a definition.

4.4.2.2.6 Additional-search-information Parameter in Search Request or
Response; Other-information Parameter in any Request or Response other than
Scan, Sort, Extended Services, or Duplicate Detection

(See items 12 and 39 above.)

For version 2, a system may not use these parameters; if a system receives one of these
parameters it may treat this condition as a protocol error.

For version 3, a system is never required to use any of these parameters. However, a system

should expect to receive these parameters, but is not required to interpret or process the
information contained within the any of these parameters.

4.4.2.2.7 Additional-ranges and Comp-spec Parameters on Present Request

(See item 15 above.)

For version 2, the client may not use these parameters. If the server receives one of these
parameters it may treat this condition as a protocol error.

For version 3, the client is not required to, but may use either of these parameters. The server
should expect to receive, but need not support either of these parameters. If the server receives

ONISO Page 107

ANSI/NISO Z39.50-2003

but does not support one of these parameters, it should not treat this condition as a protocol error
(but instead should return an appropriate status value and/or diagnostic).

4.4.2.2.8 Max-segment-count, Max-segment-size, and Max-record-size Parameters
on Present Request

(See item 16 above.)

For version 2, as well as for version 3 when segmentation is not in effect, the client may not use
these parameters; if the server receives any of these parameters it may treat this condition as a
protocol error.

For version 3:
If level-1 segmentation is in effect:

- The client may but is not required to support Max-segment-count. The server should
expect to receive, but need not support Max-segment-count. If the server receives
but does not support Max-segment-count, it must not treat this condition as a protocol
error (but instead should return an appropriate status value and/or diagnostic).

- The client may not use Max-segment-size or Max-record-size. If server receives
either it may treat this condition as a protocol error.
If level-2 segmentation is in effect:
- The client may but is not required to support any of these three parameters. The
server should expect to receive, but need not support any of these parameters. If the
server receives but does not support a parameter, it must not treat this condition as a

protocol error (but instead should return an appropriate status value and/or
diagnostic).

4.4.2.2.9 Diagnostic Format
(See items 17 and 18 above.)

For version 2, the server may send diagnostics in a Search or Present response using the default
form only. If the client receives a diagnostic which does not conform to the default form, it may
treat this condition as a protocol error.

Note: This rule applies to Search and Present responses only. Responses other than Search or
Present that include diagnostics are not affected.

For version 3, the server may send diagnostics using the default or external form. The client
should expect to receive diagnostics in either form.

4.4.2.2.10 Addinfo of Default Diagnostic Format
(See items 19 and 20 above.)
For version 2, when the server sends a diagnostic in a Search or Present response using the

default form, the addinfo parameter must be of ASN.1 type VisibleString. If the client receives a
diagnostic that violates this rule, it may treat this condition as a protocol error.

ONISO Page 108

ANSI/NISO Z39.50-2003

For version 3 the addinfo parameter may be of either type VisibleString or InternationalString.

4.4.2.2.11 Multiple Non-surrogates in Search or Present Response

(See item 21 above.)

For version 2, the server must not include multiple non-surrogate diagnostics in a Search or
Present response; if it does so, the client may treat this condition as a protocol error.

Note: This rule applies to Search and Present responses only. There are responses other than
Search or Present that include diagnostics, and these are not affected.

For version 3, the server may (but is not required to) include multiple non-surrogate diagnostics in
a Search or Present response and if it does, the client must not treat this condition as a protocol
error.

4.4.2.2.12 Segmentation
(See items 22, 23, and 24 above.)

For version 2, as well as for version 3 when segmentation is not in effect, the server may not
send a Segment request, and if it does, the client may treat this condition as a protocol error.

For version 3, level-1 or level-2 segmentation may be negotiated, however neither the server nor
the client is required to support segmentation.

4.4.2.2.13 Delete Service, Trigger-resource-control Service, Resource-report
Service, Sort Service, Scan Service, Extended-Services Service, and Duplicate
Detection Service

(See items 25, 30, 31, 34, 35, 36, and 44 above.)

A system is not required to support any of these services. They are independently negotiable. If
the server receives a request of one of these types and the respective service is not in effect, it
may treat this condition as a protocol error.

This requirement is independent of version.

4.4.2.2.14 Access-control and Resource-control Services

(See items 27 and 29 above.)

A system is not required to support either of these services. They are independently negotiable. If
the client receives an Access-control or Resource-control request and the respective service is
not in effect (or if the request occurs while the client is awaiting an Init response and the client

has not proposed the respective option in the Init request), it may treat this condition as a protocol
error.

This requirement is independent of version.

ONISO Page 109

ANSI/NISO Z39.50-2003

4.4.2.2.15 'failure-10' value of Delete-list-status on Delete Response

(See item 26 above.)

For version 2, the server may not return this value; if it does the client may treat this condition as
a protocol error.

For version 3, the server may return this value.

4.4.2.2.16 Security-challenge-response and Diagnostic in Access-control
Response

(See item 28 above.)

For version 2, the client must include in the Access-control response the parameter Security-
challenge-response, and may not include a diagnostic. If the server receives an Access-control
response that violates this rule it may treat this condition as a protocol error.

For version 3, the client may include a diagnostic, and if so, the parameter
securityChallengeResponse may be omitted.

4.4.2.2.17 Op-id Parameter of Resource-report Request

(See item 32 above.)

For version 2, the client may not use this parameter; if the server receives this parameter it may
treat this condition as a protocol error.

For version 3, the client may, but is not required to include this parameter. The server should
expect to receive, but need not support the parameter. If the server receives but does not support
this parameter, it should not treat this condition as a protocol error (but instead should return an
appropriate status).

4.4.2.2.18 failure-5 and failure-6 Resource-report-status in Resource-report
Response

(See item 33 above.)

For version 2, the server may not return either value for this status; if it does the client may treat
this condition as a protocol error.

For version 3, the server may return either value.

4.4.2.2.19 Close Service

(See item 37 above.)

For version 2, the Close service may not be used. If a system receives a Close request, it may
treat this condition as a protocol error.

ONISO Page 110

ANSI/NISO Z39.50-2003

For version 3, a system must expect to receive a Close request, and must be capable of
responding with a Close response. A system is not required to send a Close request.

4.4.2.2.20 Explain Facility
(See item 38 above.)

There are no conformance requirements pertaining to the Explain facility, either for version 2 or
version 3. A system may choose to support or not support Explain.

Note that implementation of Explain requires, at minimum, support for searching the Explain
database and for the Explain record syntax. This standard does not require support for searching
any particular database or support for any particular record syntax.

4.4.2.2.21 Other-information Parameter in Scan, Sort, Extended Services, and
Duplicate Detection Request

(See item 40 above.)

The parameter Other-information may occur in a Scan, Sort, Extended Services or Duplicate
Detection request or response. A system should expect to receive this parameter, but is not
required to interpret or process the information contained within the parameter.

This requirement is independent of version.

4.4.2.2.22 Concurrent Operations
(See item 41 above.)

For version 2, as well as for version 3 when concurrent operations is not in effect, if a client
attempts to initiate concurrent operations (i.e. attempts to initiate an operation when an operation
is already active), the server may treat this as a protocol error.

For version 3, a system may choose to support or not to support concurrent operations.

4.4.2.2.23 Named Result Sets

(See item 13 above.)

A system may choose to support or not support named result sets.

If the server receives a Search request where the value of the parameter Result-set-id is other

than 'default' and the server does not support named result sets:

If version 2 is in effect, the server should not treat this condition as a protocol error but should
instead return an appropriate diagnostic.

If version 3 is in effect, the server may treat this condition as a protocol error or may instead
return an appropriate diagnostic.

ONISO Page 111

ANSI/NISO Z39.50-2003

4.4.2.2.24 InternationalString Definition

(See item 42 above.)

For version 2, a value of a parameter of ASN.1 type InternationalString must conform to the
VisibleString definition. A system which receives a value that violates this rule may treat this
condition as a protocol error.

For version 3, a value of a parameter of ASN.1 type InternationalString must conform to the
GeneralString definition. A system which receives a value that does not conform to the
VisibleString definition (but does conform to the GeneralString definition) must not treat this
condition as a protocol error.

4.4.2.2.25 Reference-id

(See item 43 above.)

For both version 2 and version 3, a client may choose to support or not support the Reference-id
parameter; a server must support the Reference-id parameter. Note, however, for version 3,
client support of concurrent operations (see 4.4.2.2.23) implies support for the reference-id
parameter.

4.4.2.2.26 Result-count Parameter of Sort Response
(See item 34.1 above.)

A client may support the Sort service and still not recognize this parameter (because it is newly
defined in Z39.50-2003), as long as option bit 16 is not negotiated. Thus if option bit 16 is not
negotiated and the client receives this parameter it may consider this to be a protocol error. If
option bit 16 is negotiated, the client must recognize this parameter. The server is never required
to support this parameter (thus even if option bit 16 is negotiated the server is never obligated to
send this parameter).

This requirement is independent of version.

4.4.2.2.27 Negotiation Model

(See item 44 above.)

Neither the client nor server is required to support the negotiation model. However, if the client
and server both set the "negotiation model" option bit both signify adherence to the model and
may assume that negotiation is carried out in accordance with the model.

This requirement is independent of version.

4.4.2.2.28 Query Type 104

(See item 46 above.)

ONISO Page 112

ANSI/NISO Z39.50-2003

Neither the client nor server is required to support the type-104 query. If the type-104 option bit is
negotiated, the client may send type-104 queries, and the server must recognize type-104
queries but is not required to support any specific external query definition.

This requirement is independent of version.

4.4.2.2.29 Encapsulation

(See item 47 above.)

Neither the client nor server is required to support encapsulation, it is a negotiated feature. Rule
for negotiation of encapsulation are supplied in 4.3.

4.4.2.2.30 String Indentifier for Schema
(See item 21A above.)
Neither the client nor server is required to support this, it is a negotiated feature. If option bit 21 is

negotiated, the client may send string identifiers for schemas, and the server must recognize
them as valid identifiers but is not required to support any specific schemas.

4.4.3 Z39.50 Version 3 Baseline Requirements

This section details the minimum requirements, beyond version 2, for a Z39.50 implementation to
claim conformance to version 3, that is, to indicate in an Init request or response that it supports
version 3.

The Version 3 Baseline Requirements include core and conditional requirements. Core
requirements apply to all version 3 implementations. Conditional requirements pertain to features
that are optional in version 2. These are requirements that are applicable in version 3 only if a
particular, optional feature is implemented, and only if that feature was part of version 2. Only the
Delete, Access-control, and Resource-report Services are affected.

Requirements are listed separately for client and server.

In the rules below, the terms accept, recognize and support have the following meaning:

Accept: Rules stating that a system must accept a particular object mean that the system
must not declare a protocol error due to receipt of that object; the system is not required to
support the function (see “support” below) associated with that object

Recognize: Rules stating that a system must recognize a particular object mean that the
system must not declare a protocol error due to receipt of that object, and must either support
the function associated with the object (see below) or must respond appropriately (e.g. with a
diagnostic) that it does not support the function.

Support: Rules stating that a system must support a particular function mean that the system
must implement the function and exhibit behavior prescribed in the standard pertaining to that
function.

ONISO Page 113

ANSI/NISO Z39.50-2003

4.4.3.1 Core Requirements

4.4.3.1.1 V3 Core Requirements for Client

1.
2.

3.

o

The client must accept the parameter additionalSearchinfo in a Search response

The client must accept both the VisibleString and InternationalString form of the addInfo
parameter within a diagnostic record

The client must accept diagnostics in both the default and external forms

The client must accept multiple non-surrogate diagnostic records in a Search or Present
response

The client must accept the parameter otherinfo in any APDU
The client must support receipt of a Close request

In the absence of character-set negotiation, the client must accept all values conforming
to the GeneralString definition for parameters of ASN.1 type InternationalString

4.4.3.1.2 V3 Core Requirements for Server

1.

o &

© 0N

11.
12.

The server must recognize search terms in a type-1 query of type OCTET STRING,
INTEGER, InternationalString, OBJECT IDENTIFIER, GeneralizedTime, EXTERNAL,
IntUnit, or NULL.

The server must recognize within a type-1 query (in addition to the global attribute set id)
an attribute set id qualifying any individual attribute within the query

The server must recognize the operand 'resultAttr' within a type-1 query
The server must recognize the operator 'prox’ within a type-1 query

The server must recognize (in addition to numeric attribute values) attribute values of
form ‘complex’(as defined in the ASN.1 for APDUS) within a type-1 query

The server must recognize a type-102 query
The server must accept the parameter additionalSearchinformation in a Search request
The server must recognize the parameter AdditionalRanges on a Present request

The server must recognize the ‘complex’ (in addition to the 'simple’) form of the
parameter recordComposition on a Present request

The server must accept the parameter otherinfo in any APDU
The server must support receipt of a Close request

In the absence of character-set negotiation, the server must accept all values conforming
to the GeneralString definition for parameters of ASN.1 type InternationalString

4.4.3.2 Conditional Requirements

4.4.3.2.1 V3 Conditional Requirements for Client

If the client implements the Delete service as well as concurrent operations: the client must
accept a value of 'failure-10' for the Delete-list-status on Delete response.

If the client implements the Resource-report service, the client must accept a value of failure-5 or
failure-6 for Resource-report-status in Resource-report response.

ONISO Page 114

ANSI/NISO Z39.50-2003

4.4.3.2.2 V3 Conditional Requirements for Server

If the server implements access control, the server must accept an Access-control response
where the parameter Security-challenge-response is omitted and which includes a dagnostic.

If the server implements resource control, the server must recognize the parameter Opld of the
Resource-report request.

ONISO Page 115

ANSI/NISO Z39.50-2003

Appendix 1 OID: Z39.50 Object Identifiers

Normative
OID.1 Object Identifier Assigned to This Standard

The following 1ISO object identifier has been assigned to this standard:

{iso (1) member-body (2) US (840) ANSI-standard-z39.50 (10003)}

Note: This OID was originally assigned to Z39.50-1992; it applies also to 239.50-1995 and
Z39.50-2003.

OID.2 Object Classes

The following values, corresponding to object classes, are registered at the level immediately
subordinate to ANSI-standard-239.50:

1 = (no longer assigned)

2 = abstract syntax definition for APDUs
3 = attribute set definitions

4 = diagnostic definitions

5 =record syntax definitions

6 =(no longer assigned)

7 = resource report format definitions

8 = access control format definitions

9 = extended services definitions

10 = user information format definitions
11 = element specification format definitions
12 = variant set definitions

13 = database schema definitions

14 = tag set definitions

15 = negotiation definitions

©NISO Page 116

ANSI/NISO Z39.50-2003
16 = query definitions

The following ASN.1 module establishes shorthand notation for the Z39.50 object identifier, and
for the object classes. The notation is used in appendices that follow.

See ASN1.2

OID.3 Object Identifiers for Z39.50 APDUs

This standard assigns the following object identifier for the ASN.1 definition of APDUs in 4.1.
Z39-50-APDU {Z39-50-APDU 1}

Note: the same OID for APDUs is used for Z39.50-1992, Z39.50-1995, and Z39.50-2003, to
enable interworking between the versions.

OID.4 Object Identifiers Used by This Standard

Z39.50 object identifiers are either public or locally defined. Public Z39.50 object identifiers are
those listed in this standard or officially registered by the Z39.50 maintenance agency (see
OID.5). Locally defined 239.50 object identifiers are registered by a registered Z39.50
Implementor (see OID.6 and OID.7).

OID.5 Object Identifiers Assighed by the Z39.50 Maintenance Agency

Additional object identifiers may be assigned by the Z39.50 Maintenance Agency (see note), of the form:
{Z239-50 n m}

where {z39-50 n} is an object class defined in OID.2, or is an additional object class defined by
the maintenance agency.

Note: At the time of approval of this standard, the Z39.50 Maintenance Agency is the Library of
Congress.

OID.6 Locally Registered Objects

Locally registered objects are of the form:

{Z39-50 n 1000 p m}

where {z39-50 n} is as described in OID.5, and 'p' is the OID index of a registered Z39.50
Implementor (contact the Z39.50 Maintenance Agency for procedures for registration of an
implementor). A locally registered object may be published or private. Local, published objects
are those whose definitions are coordinated with and published by the Z39.50 Maintenance
Agency. Local, private objects are those whose definitions are not published by the Z39.50
Maintenance Agency.

©NISO Page 117

ANSI/NISO Z39.50-2003
OID.7 Experimental Objects

Experimental objects are of the form:
{Z39-50 n 2000 p m}

where {z39-50 n} is as described in OID.5, and 'p' is the OID index of a registered Z39.50
Implementer.

Appendix 2 ATR: Attribute Sets

(Normative)

Each attribute set defines a set of types and for each type a set of values. An attribute list (see
AttributeList in the ASN.1 for APDUSs, 4.1), constructed from an attribute set definition, is a list of
attribute pairs. An attribute pair (AttributeElement in the ASN.1 for APDUS) consists of an attribute
type and a value list (attributeValue within AttributeElement), where each value in the list is
defined for that type.

When version 2 is in force, each value list is a single value and is an integer. When version 3 is in
force, attributeValue (within AttributeElement) may select 'complex’, allowing the value list to
include multiple values (each may be integer or string) and also to specify a ‘'semanticAction’,
indicating how the server is to treat the multiple attributes.

When an attribute list contains any attribute pair where attributeValue selects ‘complex’, there
must not be any attribute type within the attribute list for which there is more than a single
attribute pair.

ATR.1 Attribute Set exp-1

This section defines the attribute-set exp-1, for use with an Explain database. The attribute set
exp-1 defines a single attribute type, 'Use'. In addition, this attribute set definition imports non-Use
bib-1 attributes, i.e. those of type Relation, Position, Structure, Truncation, and Completeness.
The types and values defined within the bib-1 attribute set for these attributes may be used within
the exp-1 attribute set, using the object identifier for this attribute set. It is recommended that a
server supporting the Explain facility support the Relation attribute ‘equal’, Position attribute 'any’'
position in field', and Structure attribute 'key'.

Note: If the server supports searching based on date ranges (e.g. to limit a search to records
created before or after a particular date or between two dates), the server should also support
one or more of the following relation attributes: 'less than', 'less than or equal’, ‘greater than', and
‘greater or equal'.

©NISO Page 118

ANSI/NISO Z39.50-2003
Table 1: Exp-1 Use Attributes

Use Value | Use Value | Use Value

ExplainCategory 1 HumanStringLanguage 2 DatabaseName
ServerName 4 AttributeSetOID 5 RecordSyntaxOID
TagSetOID 7 ExtendedServiceOID 8 DateAdded
DateChanged 10 DateExpires 11 ElementSetName 12
Processing Context 13 ProcessingName 14 TermListName 15
SchemaOID 16 Producer 17 Supplier 18
Availability 19 Proprietary 20 UserFee 21
VariantSetOID 22 UnitSystem 23 Keyword 25
ExplainDatabase 26 ProcessingOID 27

Notes:

Q) The search terms for Use attribute ExplainCategory are listed in table 2.

(2) The search term when the Use attribute is HumanStringLanguage is the three-character

language code from ANSI/NISO 239.53-1994 -- Codes for the Representation of
Languages for Information Interchange.

3) The search terms when the Use attribute is ProcessingContext are listed in table 3.

(4) Where the search term is an object identifier (where the name of the Use attribute ends
with "OID"): for version 2, it is recommended that the term be a character string
representing a sequence of integers (each represented by a character string) separated
by periods. For version 3, it is recommended that the term be represented as ASN.1 type
OBJECT IDENTIFIER.

(5) Use attribute Keyword is used when searching for Databaselnfo records (i.e. in
combination with an operand where Use is ExplainCategory and term is Databaselnfo).
Its use is to search in the keyword element, for terms that match one of the query terms.

(6) Use attribute ExplainDatabase is used when searching for Databaselnfo records (i.e. in
combination with an operand where Use is ExplainCategory and term is Databaselnfo).
The term should be NULL, for version 3, or otherwise ignored by the server. The Relation
attribute either should be omitted or should be AlwaysMatches.

Use attributes DateAdded, DateChanged, DateExpires" correspond to elements in the
Commonlnfo for every Explain record, respectively, dateAdded, dateChanged, and expiryDate.
These elements pertain to the Explain record itself: when it was first added to the Explain
database, when it was last updated, and when it should be thrown away from any caches.

Table 2: Search terms associated with use attribute ExplainCategory

Targetinfo TermListinfo SortDetails
Databaselnfo extendedServicesinfo Processing
Schemalnfo AttributeDetails CategoryList
TagSetinfo TermListDetails VariantSetinfo
RecordSyntaxInfo ElementSetDetails Unitinfo
AttributeSetinfo RetrievalRecordDetails

©NISO Page 119

ANSI/NISO Z39.50-2003

Table-3: Search terms associated with use attribute ProcessingContext
Access Retrieval RecordHandling

Search RecordPresentation
ATR.2 Attribute Set ext-1

This section defines the attribute-set ext-1, for use with an Extended Services database. Two
types are defined:

Attribute Type Value
Use 1
Permissions 2

Additional attributes (types and/or values) may be defined within a specific Extended Service
definition. The attribute set id to be used to identify those attributes is the Objectldentifier that
identifies the specific Extended Service.

Table 4: Ext-1 Use Attributes

Use Value | Use Value | Use Value
Userld 1 PackageName 2 CreationDatetime 3
TaskStatus 4 PackageType 5 RetentionTime
ServerReference

Table 5: Ext-1 Permission Attributes

Use Value | Use Value | Use Value
Delete 1 Modify 2 ModifyPermissions
Present 4 Invoke 5 Any

Note: The Permission attribute is for use only when the value of the Use attribute is Userld, in
which case the purpose is to search for task packages for which the specified user has the
specified permission.

©NISO Page 120

ANSI/NISO Z39.50-2003

Appendix 3 DIAG: Z39.50 Diagnostics

Normative

When version 2 is in force, a Z39.50 diagnostic record conforms to the following format:

DefaultDiagFormat ::= SEQUENCE{
diagnosticSetld OBJECT IDENTIFIER,
condition INTEGER,
addinfo VisibleString}

The diagnostic record includes an integer corresponding to a condition or error, and an (object)
identifier of the diagnostic set definition that lists the condition corresponding to that integer.

When version 3 is in force, a diagnostic record may assume the form above, or alternatively, may
be defined as EXTERNAL, identified by an OBJECT IDENTIFIER (which identifies the diagnostic
format, rather than the diagnostic set).

DIAG.1 General Diagnostic Set

Diagnostic set bib-1 was defined in earlier versions of this standard and is renamed in this
standard as the General Diagnostic Set, with the same object identifier:

general-diagnostics {Z39-50-diagnostic 1}

The table below is for use when DiagnosticSetld (within DefaultDiagFormat) equals the object
identifier for the General Diagnostic set, in which case, Condition takes values from the "Code"
column below.

AddInfo is ASN.1 type VisibleString. However, for several of the diagnostics below, AddInfo is
used to express the value of a parameter that has an ASN.1 type other than VisibleString. Where
Addinfo is used to express a numeric value, it should be a character string representation of that
value. Where Addinfo is used to express an object identifier, it should take the form of a
sequence of integers (each represented by a character string) separated by periods.

The General Diagnostic Set includes the diagnostics listed below, which includes all of the
general diagnostics registered at the time of approval of this standard. For a complete list, see
http://lcweb.loc.gov/z3950/agency/defns/diag.html

Code Meaning Addinfo
1 permanent system error (unspecified)
temporary system error (unspecified)
unsupported search (unspecified)

©NISO Page 121

ANSI/NISO Z39.50-2003

Code Meaning Addinfo
4 Terms only exclusion (stop) words (unspecified)
5 Too many argument words (unspecified)
6 Too many hoolean operators (unspecified)
7 Too many truncated words (unspecified)
8 Too many incomplete subfields (unspecified)
9 Truncated words too short (unspecified)
10 Invalid format for record number (search term) (unspecified)
11 Too many characters in search statement (unspecified)
12 Too many records retrieved (unspecified)
13 Present request out-of-range (unspecified)
14 System error in presenting records (unspecified)
15 Record not authorized to be sent intersystem (unspecified)
16 Record exceeds Preferred-message-size (unspecified)
17 Record exceeds Exceptional-record-size (unspecified)
18 Result set not supported as a search term (unspecified)
19 Only single result set as search term supported (unspecified)
20 Only ANDing of a single result set as search term (unspecified)
21 Result set exists and replace indicator off (unspecified)
22 Result set naming not supported (unspecified)
23 Specified combination of databases not supported (unspecified)
24 Element set names not supported (unspecified)
25 Specified element set name not valid for specified database | (unspecified)
26 Only generic form of element set name supported (unspecified)
27 Result set no longer exists - unilaterally deleted by server (unspecified)
28 Result set is in use (unspecified)
29 One of the specified databases is locked (unspecified)
30 Specified result set does not exist (unspecified)
31 Resources exhausted - no results available (unspecified)
Resources exhausted - unpredictable partial results
32 available (unspecified)
33 Resources exhausted - valid subset of results available (unspecified)
100 (unspecified) error (unspecified)
101 Access-control failure (unspecified)
Challenge required, could not be issued - operation
102 terminated (unspecified)
Challenge required, could not be issued - record not
103 included (unspecified)

©NISO

Page 122

ANSI/NISO Z39.50-2003

Code Meaning Addinfo
104 Challenge failed - record not included (unspecified)
105 Terminated at client request (unspecified)
106 No abstract syntaxes agreed to for this record (unspecified)
107 Query type not supported (unspecified)
108 Malformed query (unspecified)
109 Database unavailable database name
110 Operator unsupported operator
111 Too many databases specified maximum
112 Too many result sets created maximum
113 Unsupported attribute type type
114 Unsupported Use attribute value
115 Unsupported term value for Use attribute term
116 Use attribute required but not supplied (unspecified)
117 Unsupported Relation attribute value
118 Unsupported Structure attribute value
119 Unsupported Position attribute value
120 Unsupported Truncation attribute value
121 Unsupported Attribute Set 0id
122 Unsupported Completeness attribute value
123 Unsupported attribute combination (unspecified)
124 Unsupported coded value for term value
125 Malformed search term (unspecified)
126 lllegal term value for attribute term
127 Unparsable format for un-normalized value value
128 lllegal result set name name
129 Proximity search of sets not supported (unspecified)
130 lllegal result set in proximity search result set name
131 Unsupported proximity relation value
132 Unsupported proximity unit code value

Proximity not supported with this attribute combination
201 attribute list
202 Unsupported distance for proximity distance
203 Ordered flag not supported for proximity (unspecified)
205 Only zero step size supported for Scan (unspecified)
206 Specified step size not supported for Scan step size
207 Cannot sort according to sequence sequence

©NISO

Page 123

ANSI/NISO Z39.50-2003

Code Meaning Addinfo

208 No result set name supplied on Sort (unspecified)
Generic sort not supported (database-specific sort only

209 supported) (unspecified)

210 Database specific sort not supported (unspecified)

211 Too many sort keys number

212 Duplicate sort keys key

213 Unsupported missing data action value

214 lllegal sort relation relation

215 lllegal case value value

216 lllegal missing data action value
Segmentation: Cannot guarantee records will fit in specified

217 segments (unspecified)

218 ES: Package name already in use name

219 ES: no such package, on modify/delete name

220 ES: quota exceeded (unspecified)

221 ES: extended service type not supported type

222 ES: permission denied on ES - id not authorized (unspecified)

223 ES: permission denied on ES - cannot modify or delete (unspecified)

224 ES: immediate execution failed (unspecified)

225 ES: immediate execution not supported for this service (unspecified)
ES: immediate execution not supported for these

226 parameters (unspecified)

227 No data available in requested record syntax (unspecified)

228 Scan: malformed scan (unspecified)

229 Term type not supported type

230 Sort: too many input results max

231 Sort: incompatible record formats (unspecified)

232 Scan: term list not supported alternative term list

233 Scan: unsupported value of position-in-response value

234 Too many index terms processed number of terms

235 Database does not exist database name

236 Access to specified database denied database name

237 Sort: illegal sort (unspecified)

alternative suggested

238 Record not available in requested syntax syntax(es)

239 Record syntax not supported syntax

240 Scan: Resources exhausted looking for satisfying terms (unspecified)

©NISO

Page 124

ANSI/NISO Z39.50-2003

Code Meaning Addinfo
241 Scan: Beginning or end of term list (unspecified)
Segmentation; max-segment-size too small to segment
242 record smallest acceptable size
243 Present: additional-ranges parameter not supported (unspecified)
244 Present: comp-spec parameter not supported (unspecified)
245 Type-1 query: restriction (‘resultAttr') operand not supported | (unspecified)
246 Type-1 query: ‘complex’ attributeValue not supported (unspecified)
Type-1 query: ‘attributeSet' as part of AttributeElement not
247 supported (unspecified)
1001 Malformed APDU.
1002 ES: EXTERNAL form of Iltem Order request not supported.
ES: Result set item form of Item Order request not
1003 supported.
ES: Extended services not supported unless access control
1004 is in effect.
1005 Response records in Search response not supported.
Response records in Search response not possible for
1006 specified database (or database combination). See note 1.
pointers to servers that have
a surrogate Explain database
1007 No Explain server. See note 2. for this server.
1008 ES: missing mandatory parameter for specified function parameter
1009 ES: Item Order, unsupported OID in itemRequest. 0ID
1010 Init/AC: Bad Userid
1011 Init/AC: Bad Userid and/or Password
Init/AC: No searches remaining (pre-purchased searches
1012 exhausted)
Init/AC: Incorrect interface type (specified id valid only when
1013 used with a particular access method or client)
1014 Init/AC: Authentication System error
InittAC: Maximum number of simultaneous sessions for
1015 Userid
1016 Init/AC: Blocked network address
1017 Init/AC: No databases available for specified userld
1018 Init/AC: System temporarily out of resources
1019 Init/AC: System not available due to maintenance when it's expected back up
1020 Init/AC: System temporarily unavailable when it's expected back up
1021 Init/AC: Account has expired
1022 Init/AC: Password has expired so a new one must be

©NISO

Page 125

ANSI/NISO Z39.50-2003

Code Meaning Addinfo
supplied
Init/AC: Password has been changed by an administrator
1023 S0 a new one must be supplied

an unstructured string
indicating the object identifier
of the attribute set id, the
numeric value of the attribute
type, and the numeric value

1024 Unsupported Attribute. See note 3. of the attribute.
1025 Service not supported for this database
1026 Record cannot be opened because it is locked
1027 SQL error
1028 Record deleted
1029 Scan: too many terms requested. Addinfo: max terms supported
1030 -
1039 currently unnassigned
1040 ES: Invalid function function
1041 ES: Error in retention time (unspecified)
1042 ES: Permissions data not understood permissions
1043 ES: Invalid OID for task specific parameters oid
1044 ES: Invalid action action
1045 ES: Unknown schema schema
1046 ES: Too many records in package maximum number allowed
1047 ES: Invalid wait action wait action
ES: Cannot create task package -- exceeds maximum
1048 permissable size (see note 4) maximum task package size
ES: Cannot return task package -- exceeds maximum maximum task package size
1049 permissable size for ES response (see note 5) for ES response
maximum size of extended
1050 ES: Extended services request too large (see note 6) services request
1051 Scan: Attribute set id required -- not supplied
ES: Cannot process task package record -- exceeds
1052 maximum permissible record size for ES (see note 7) maximum record size for ES
ES: Cannot return task package record -- exceeds
maximum permissible record size for ES response (see maximum record size for ES
1053 note 8) response
oid(s) of required negotiation
1054 Init: Required negotiation record not included record(s)
1055 Init: negotiation option required
1056 Attribute not supported for database attribute (oid, type, and

©NISO Page 126

ANSI/NISO Z39.50-2003
Code Meaning Addinfo

value), and database name

ES: Unsupported value of task package parameter (See

1057 Note 9) parameter and value
Duplicate Detection: Cannot dedup on requested record

1058 portion
Duplicate Detection: Requested detection criterion not

1059 supported detection criterion
Duplicate Detection: Requested level of match not

1060 supported
Duplicate Detection: Requested regular expression not

1061 supported

1062 Duplicate Detection: Cannot do clustering

1063 Duplicate Detection: Retention criterion not supported retention criterion
Duplicate Detection: Requested number (or percentage) of

1064 entries for retention too large

1065 Duplicate Detection: Requested sort criterion not supported sort criterion

1066 CompSpec: Unknown schema, or schema not supported.
Encapsulation: Encapsulated sequence of APDUSs not specific unsupported

1067 supported sequence
Encapsulation: Base operation (and encapsulated APDUS)

1068 not executed based on pre-screening analysis.

1069 No syntaxes available for this request. See note 10.
user not authorized to receive record(s) in requested

1070 syntax

1071 preferredRecordSyntax not supplied

1072 Query term includes characters that do not translate into the Characters that do not

target character set. translate
Notes:

1. Diagnostic 1006 is intended for the case of an intermediary providing access to multiple
servers, some of which may support piggybacking and some which do not. This
diagnostic is for the intermediary to use in case the particular end server doesn't support
piggybacking (as opposed to diagnostic 1005, which, in the case of an intermediary,
would imply that the intermediary does not support piggybacking).

2. Diagnostic 1007 is intended for use as Search diagnostic, when the client attempts to
search the Explain database, and although the server doesn't support Explain, it is
smart enough to recognize that this is what the client is attempting, and is able to
recommend a surrogate server.

3. Diagnostic 1024 was included because existing attribute-related diagnostics are specific
to the bib-1 attribute set. For example a query might contain the operand
"Parent-collection = ‘federal theater Project™ where 'parent-collection’ is a Use attribute
from the digital collection attribute set. If the server does not support that attribute, it may
return this diagnostic and attach the string (in the addinfo field) "attribute set:

©NISO Page 127

ANSI/NISO Z39.50-2003
1.2.840.10003.3.7; type: 1; value: 4".

4. Diagnostic 1048 applies when the client sends an ES request (update) containing one or
more records, and the resultant task package is too large for the server. (The client must
then find a way to reduce the size of the task package or use some other means of
sending the update request.)

5. Diagnostic 1049 applies when the client sends an ES request (update) with waitAction =
'wait', the task package is created, but it is too large for the server to return in the
response. The client can then use Search and Present on the task package database to
retrieve the task package, perhaps specifying an element set that will reduce record
sizes, or using segmentation. (When using Search and Present on the task package the
diagnostics 16, "Record exceeds preferred message size", and 17, "Record exceeds
preferred message size" apply.)

6. Diagnostic 1050 applies when the client sends an ES request (Update) containing one or
more records, and the entire message is too large for the server. The client must then
find a way to reduce the message size or use some other means of sending the update
request.

7. Diagnostic 1052 applies when the client sends an ES request (Update) containing one or
more records; the message is within message size limits and the task package is within
task package limits, but one of the records is too large. Diagnostic 1052 would be
substituted as a surrogate diagnostic within the returned task package. The offending
record would have no effect on the processing of other records that may have been
included in the request, and in fact these other records may be returned in the ES
response in the case of waitAction = 'wait'. The client should recreate the record within
the size limit and submit another ES request with that record.

8. Diagnostic 1053 applies when the client sends an ES request (Update) with waitAction =
'wait', containing one or more records; the message is within message size limits and
the task package is within task package limits, but one of the records is too large to fit in
task package for return in the ES response. Diagnostic 1053 would be substituted as a
surrogate diagnostic within the returned task package in the ES response. The record
may in fact have been updated but it could not be included in the returned task package.
The client can then use Search and Present on either the database itself or on the task
package database to retrieve the record, if necessary specifying an element set that will
reduce the record size, or using segmentation. (When using Search and Present on the
task package the diagnostics 16, "Record exceeds preferred message size", and 17,
"Record exceeds preferred message size" apply.)

9. Diagnostic 1057 applies for example when a client sends a PeriodicQuerySchedule with
a period of "fortnight”, but the server only supports period in seconds and cannot convert
to fortnight; or the client send Exportinvocation where the value of ‘records' is' ranges',
but the server only support a value of ‘all'.

10. Diagnostic 1069 is used when Present status is ‘failure’. This is a non-surrogate
diagnostic applying to the Present operation (or Retrieval phase of search operation) at
large rather than to a single record.

DIAG.2 General Diagnostic Container

The General Diagnostic Container is assigned the following object identifier:

generalDiagnosticContainer {Z39-50-diagnostic 4}

©NISO Page 128

ANSI/NISO Z39.50-2003

This format provides a service-independent and status-independent mechanism for a server to provide
operation-level diagnostics. It provides a well-known object identifier that a client will recognize to mean
"diagnostics inside", even though the client may not recognize any of the object identifiers (and
consequently any of the diagnostics) contained within.

For example, suppose one or more APDUs are encapsulated within a Search (see 4.3), the
Search executes successfully, but the server choose not to execute the encapsulated APDUSs.
The server is expected to include in the response to the Search APDU an appropriate diagnostic,
for example: "specified sequence of APDUSs is not supported”. The diagnostic mechanism defined
for Search does not readily accommodate a diagnostic of this nature, particularly where the
Search status is 'success'.

This format is intended for use within otherinfo (or by simulation of otherinfo using the
userinformationField; see USR.2: Use of Init Parameters for User Information). It may also be
used to support diagnostic information in an Init response; see DIAG.3 “Returning diagnostics in
an InitResponse”. It is not intended to supercede diagnostic mechanisms already defined for
individual services.

See ASN1.3

DIAG.3 Returning Diagnostics in an InitResponse

A server may supply one or more diagnostics in an InitResponse APDU, within Userinfo-1 (see
USR.3), within userinformationField.

When the server wishes to return one or more diagnostics, it may do so using the General
Diagnostic Container (see DIAG.2) which may be included within Userinfo-1, which is the
EXTERNAL to be referenced by userinformationField.

See related specification “Use of Init Parameters for User Information.” USR.2.

For examples of diagnostics meaningful in an Init response see General Diagnostic Set (DIAG.1)
diagnostics 1010 through 1013.

©NISO Page 129

ANSI/NISO Z39.50-2003

Appendix 4 REC: Record Syntaxes

Normative

This appendix lists Z39.50 record syntaxes, but only those that are generic (SUTRS and
GRS-1) or directly related to the protocol (Explain and Extended Services Task Package).
In Z39.50-1995 a more complete list of record syntaxes was included. These can be found
at http://lcweb.loc.gov/z3950/agency/defns/oids.html#5

REC.1 Explain Record Syntax

See ASN1.4

REC.2 Simple Unstructured Text Record Syntax, SUTRS

The Simple Unstructured Text Record Syntax (SUTRS) is intended to be used as a record syntax
in a Search or Present response, to present textual data so that the client may display it with little
or no analysis and manipulation. A SUTRS record is unstructured; the text of a SUTRS record
might represent individual elements, but the elements are not explicitly identified by the syntax.
The convention prescribed by the SUTRS definition is to use a delimiter within the text to indicate
the end of a line of text. The prescribed line terminator is ASCII LF (X'0A"). Thus a SUTRS record
consists simply of a string of textual data.

This definition recommends that the maximum line length be 72 characters unless an alternative
maximum is requested, for example via a variantRequest. This is not an absolute maximum, but it
is recommended that servers make a best effort to limit lines to this length.

See ASN1.5

Note: A SUTRS record valid when version 3 is in force might not be valid for version 2. When
SUTRS is used in version 2, even though it carries the GeneralString tag, it may only include
characters from the VisibleString repertoire.

©NISO Page 130

ANSI/NISO Z39.50-2003
REC.3 Generic Record Syntax 1

See ASN1.6

REC3.1 Embedding MARC in a GRS-1 Record

This section describes how to embed a MARC record within a GRS-1 record. This pertains to the
case where GRS-1 is the record syntax; it does not address nor preclude the case where the
record syntax itself is one of the MARC formats, e.g. MARC21.

When a MARC record is to be embedded inside a GRS-1 record, the MARC record should be
encoded as EXTERNAL, via the 'ext' CHOICE for ElementData. The associated Object Identifier
(for the EXTERNAL) will be the Object Identifier assigned to the particular MARC format (e.g.
1.2.840.10003.5.10 for MARC21).

The reason for this specification is that there is potentially more than one way to embed MARC
within GRS, for example, the MARC record could be encoded as OCTET STRING, where an
applied variant is supplied to identify the MARC format.

According to this specification, the EXTERNAL form, rather than OCTET STRING, should be

used, regardless of whether or not an applied variant is supplied (it may, but need not, be
supplied).

REC.4 Record Syntax For Extended Services Task Package

See ASN1.7

©NISO Page 131

ANSI/NISO Z39.50-2003

Appendix 5 RSC: Resource Report Formats

Normative

This appendix provides the definition of the resource report formats resource-2, whose object
identifier is:

resource-2 {Z39-50-resourceReport 2}

In earlier versions of this standard the definition of resource-1 was also provided. Its object
identifier is:

resource-1 {Z39-50-resourceReport 1}

resource-1, defined in 1992, provides 16 categories of resources with no provision for
extensibility. Resource-2, defined in 1995, inherits the original 16 categories, with provision for
extensibility. Thus resource-2 is a compatible superset of resource-1. The resource-1 definition is

therefore not provided. However, It is recommended that a client be prepared to recognize the
resource-lobject identifier.

Resource Report Format Resource-2

See ASN1.8

©NISO Page 132

ANSI/NISO Z39.50-2003

Appendix 6 ACC: Access Control Formats

Normative

This appendix provides definitions for the following access control formats:
prompt-1 {Z239-50-accessControl 1}

des-1 {Z239-50-accessControl 2}

krb-1 {Z39-50-accessControl 3}

Access control formats are defined for use within the parameters securityChallenge and
securityChallengeResponse of the AccessControlRequest and AccessControlResponse APDUS,
and idAuthentication of the InitializeRequest APDU.

See ASN1.9

©NISO Page 133

ANSI/NISO Z39.50-2003

Appendix 7 EXT: Extended Services Defined by this Standard

Normative

This standard defines and registers the Extended Services listed below, and assigns the following
object identifiers:

PersistentResultSet {Z39-50-extendedServices 1}
PersistentQuery {Z39-50-extendedServices 2}
PeriodicQuery Schedule {Z39-50-extendedServices 3}
ItemOrder {Z39-50-extendedServices 4}
DatabaseUpdate {Z239-50-extendedServices 5}
ExportSpecification {Z39-50-extendedServices 6}
Exportlnvocation {Z39-50-extendedServices 7}

EXT.1 provides service descriptions, and EXT.2 provides ASN.1 definitions.

EXT.1 Service Definitions

An Extended Service is carried out by an Extended Service (ES) task, which is invoked by an ES
operation. The ES Service is described in 3.2.9.1.

Execution of the ES Operation results in the creation of a task package, represented by a
database record in the ES database. A task package contains parameters, some of which are
common to all task packages regardless of package type, and others that are specific to the task
type. Among the common parameters, some are supplied by the client as parameters in the ES
request, and others are supplied by the server.

Table-1 : Parameters Common to all Extended Services

Common Task Package Client supplied Server supplied Reference
Parameter

packageType m 3.29.1.2
packageName 0 3.29.1.3
userld 0 3.29.14
retentionTime 0 0 3.29.15
permissionsList 0 0 3.29.1.6
description 0 3.29.1.7
serverReference 0 3.29.18
creationDateTime 0 3.29.1.9
taskStatus m 3.29.1.10
packageDiagnostics 0 3.2.9.1.11

©NISO Page 134

ANSI/NISO Z39.50-2003
The specific parameters are derived from the ES request parameter Task-specific-parameters.
Table 1 provides a summary of common parameters. Their descriptions are included in 3.2.9.1.
For parameters listed as both "client supplied" and "server supplied,” when both client and server
supply a value, the server supplied value overrides the client supplied value.

EXT.1.1 Persistent Result Set Extended Service

The Persistent Result Set Extended Service allows a client to request that the server create a
persistent result from a transient result set belonging to the current Z-association. The Persistent
Result Set task has no effect on the transient result set; it remains available for use by the Z-
association. The persistent result set is saved for later use, during the current or a different Z-
association. It may subsequently be deleted, by deletion of the task package.

Note: The client may thus cause deletion of the persistent result set, by deleting the task
package, if the client user has "delete” permission for that package.

A Present (using the ResultSetName element specification), against the Persistent Result Set
Parameter Package returns a Parameter Package that contains a server-supplied transient result
set name, which may be used during the same Z-association wherever a result set name may be
used (e.g. within a query, or in Present, Sort, or Delete request).

This definition does not specify how persistent result sets are implemented (only how they are
viewed by the client). When a transient result set is "saved", presumably it will be restored
subsequently into another transient result set (either in the same session or a different session).
So suppose for example transient result set A is saved (i.e. a Persistent Result Set Task Package
representing that result set is created) and subsequently restored into transient result set B (i.e.
the task package is “Present”ed and the server supplies the result set name B, meaning,
implicitly, that the client may use B to reference the restored result set). Suppose (for illustration)
that it is restored within the same session during which it was earlier saved; in that case, the
result sets A and B should be identical (if a record has changed according to result set A, then it
has also changed according to result set B), if the server has implemented result sets according
to the abstract model, i.e. via pointers. But there is no such requirement that the server do so.
The server might instead "save" the result set by actually copying the records, in which case the
two-result set may not be identical. The standard does not specify how the server is to actually
save and/or store the database records, or how similar to the original records the restored
records must be.

Note that management aspects of persistent result sets are not included in this definition. When a
result set is saved, a task package is created in the ES database that represents the result set.
However, the result set itself (i.e. the content) is not part of the ES database, that is, result set
records from the saved result set are not directly retrievable. They may be retrieved only as
described above, that is, by restoring the saved result set to a transient result set and then
presenting from that transient result set. So a persistent result set cannot be directly modified. A
client can save a result set and the client (or a different client) may subsequently restore it, modify
it, and save it again. But the management aspects of this are not within the scope of this
definition, except to the extent that the Extended Services facility does provide "permissions”
capability for use by an administrator. A persistent result set may be directly deleted (a client can
simply delete the task package, using the delete function on an extended services request, which
in effect deletes the persistent result set).

©NISO Page 135

ANSI/NISO Z39.50-2003

The parameters of the Persistent Result Set Extended Service are those shown in Table 1 as well

as those in Table 2.

Table 2: Specific Parameters for Persistent Result Set

Specific Task Client Supplied Server Supplied Task Package
Parameter Parameter
clientSuppliedResultSet ia
replaceOrAppend ia
serverSuppliedResultSet ia ia
numberOfRecords 0 0

clientSuppliedResultSet

replaceOrAppend

serverSuppliedResultSet

numberOfRecords

The client supplies the name of a transient result set
belonging to the Z-association. If function is 'create’, the
server is to create a persistent result set from this
transient result set. If function is 'modify' the server is to
either replace an existing persistent result set
(corresponding to the specified package name) with this
result set, or append this result set to an existing
persistent result set. This parameter is mandatory when
the value of the request parameter function is 'create' or
'modify’, and is not included when function is 'delete’.

This parameter occurs when function is 'modify' (and is
valid only when the client user has "modify-contents"
permission). Its value is 'replace' or 'append' meaning
that the specified result set is, respectively, to replace, or
to be appended to, the existing persistent result set.

When the client retrieves the task package, the server
supplies the name of a transient result set, which then
belongs to the Z-association. The result set is a copy of
the persistent result set represented by the package.
The server includes this parameter only when the task
package is retrieved (i.e. not on an ES response) and
does not include the parameter if the element set name
on the Present request indicates that the parameter is
not to be included.

The server indicates the total number of records in the
persistent result set.

EXT.1.2 Persistent Query Extended Service

The Persistent Query Extended Service allows a client to request that the server save a Z39.50
Query for later reference, during the same or a subsequent Z-association.

The parameters of the Persistent Query Extended Service are those shown in Table 1 as well as

those in Table 3.

©NISO

Page 136

ANSI/NISO Z39.50-2003
Table 3: Specific Parameters for Persistent Query

Specific Task Client Supplied Server Supplied Task Package
Parameter Parameter
querySpec m
actualQuery m m
databaseNames 0 0
additionalSearch 0 0
Information
querySpec and ActualQuery The client supplies either the query to be saved or the

name of another persistent query to be copied into this
package. The server supplies the actualQuery: if the
client has supplied a query, the server uses that query; if
the client supplies a task package name, the server
copies the corresponding query.

databaseNames The client optionally supplies a list of databases.

additionalSearchinformation See 3.2.2.1.12.

EXT.1.3 Periodic Query Schedule Extended Service

The Periodic Query Schedule Extended Service allows a client to request that the server
establish a Periodic Query Schedule. The client can also request that the schedule be "activated,"
either as part of the initial request to create the schedule, or as part of a subsequent request to
modify the schedule. The parameters of the Periodic Query Schedule Extended Service are those
shown in Table 1 as well as those in Table 4.

Table 4: Specific Parameters for Periodic Query Schedule

Specific Task Parameter | Client Supplied | Server Supplied | Task Package
Parameter

activeFlag m m
querySpec m

actualQuery m m
databaseNames ia m m
additionalSearchinfo 0 0
period m 0 m
expiration 0 0 0
resultSetPackageName 0 ia ia
resultSetDisposition ia ia
alertDestination 0 0
exportParameters 0 0

©NISO Page 137

ANSI/NISO Z39.50-2003

lastQueryTime m m
lastResultNumber m m
numberSinceModify 0 0

activeFlag On a Create request, if this flag is set, the Periodic

querySpec and ActualQuery

databaseNames

additionalSearchlinfo

period

expiration

resultSetPackageName

resultSetDisposition

Query Schedule is to be activated immediately upon
receipt and validation of its parameters; otherwise the
schedule is to be Created but not activated. On a Modify
request (which may contain as little as just the
ActiveFlag), the client may activate or deactivate the
schedule. In the parameter package, this parameter
indicates whether the schedule is active.

The client supplies either a query or the name of a
Persistent Query Package. (If the client supplies a query,
or if the specified query package does not include a list
of databases, then the databaseNames parameter is
required.) The server supplies the actualQuery: if the
client has supplied a query, the server uses that query; if
the client supplies a task package name, the server
copies the corresponding query.

The client may supply a list of databases; the list is
required if the client supplied a query rather than a query
package name for querySpec, or if the specified query
package does not include a list of databases.

The client may use this parameter to supply additional
search information, not specified by this definition.

The time period between invocations of the query. The
server may override the period specified by the client.
Period may be a number of days, a frequency (e.g. daily,
business daily, weekly, monthly), or ‘continuous',
meaning the search is to be run continuously (or at the
server's discretion).

The client may optionally supply a time/date for the
server to discontinue execution of this Periodic Query. If
the client does not supply a value, the client is proposing
"no expiration." The server may override the client
supplied value. If the client supplies a value and the
server does not support expiration, the server should
reject the ES request.

The client may optionally supply the name of an existing
Persistent Result Set package. If the client omits this
parameter, the server is to create a persistent result set,
unless the parameter exportParameters is included.

This parameter takes on the value 'createNew’, 'replace’,

©NISO Page 138

ANSI/NISO Z39.50-2003
or ‘append', indicating respectively whether the server is
to create a new result set each time the query is
invoked, replace the contents of the existing result set,
or append any new results to the end of the result set.
The value 'createNew' should be used only if the client
and server have an agreement about naming
conventions for the resulting package. If the value of the
parameter Period is ‘continuous' it is recommended that
the value of this parameter be 'append'. The value
‘append' allows the server to continually extend the
result set by appending new records.

alertDestination The client may optionally supply a destination address
for Alerts triggered by receipt of new Periodic Query
results (e.g. fax number, email address, pager number).

exportParameters The client may optionally supply the name, or actual
contents, of an Export Parameter Package to be used
with this Periodic Query. It is included only if the client
wants newly posted results to be exported; if so, new
results may also be posted to ResultSetName if also

specified.

lastQueryTime The server indicates the last time this Periodic Query
was invoked.

lastResultNumber The server indicates the number of new records

obtained last time query was invoked.

numberSinceModify The server indicates the total number of records
obtained via invocation of the Query since the last time
this Periodic Query Package was modified.

EXT 1.4 Item Order Extended Service

The Item Order Extended Service allows a client to submit an item order request to the server.
The parameters of the Item Order Extended Service are those shown in Table-1 as well as those
in Table5.

©NISO Page 139

ANSI/NISO Z39.50-2003

Table-5: Specific Parameters for ltem Order

Specific Task Parameter | Client Supplied | Server Supplied | Task Package
Parameter

requesteditem

item Request ia ia
supplemental Description 0
contactinformation 0
additionalBillingInfo 0
statusOrErrorReport m m
auxiliaryStatus 0 0

requestedltem

itemRequest

supplementalDescription

contactinformation

additionalBillingInfo

statusOrErrorReport

auxiliaryStatus

The client identifies the requested item, either by:

€) A request whose format is defined externally,
and which may be an Interlibrary Loan Request APDU of
ISO 10161; or

(b) A result set item (name of a transient result set
belonging to the current Z-association and an ordinal
number of an entry within that result); or

(c) Both.

If requesteditem is (a) (e.g. an interlibrary loan request),
the server copies it into the task package (although the
server might first modify the request). If requesteditem is
(b), the server may construct a corresponding item
request; if it does not, then the requested item will not be
identified within the task package.

The client may supply additional descriptive information
pertaining to the requested item, as a supplement to
requesteditem.

The client may optionally supply a name, phone number,
and electronic mail address of a contact-person.

The client may optionally indicate payment method,
credit card information, customer reference, and
customer purchase order number.

The server supplies a status or error report. The
definition of the report is external to this standard, and
may be based on the StatusOrErrorReport APDU of the
ILL protocol.

The server may provide an auxiliary status as a
supplement to the status information which might be
provided by the statusOrErrorReport.

©NISO Page 140

ANSI/NISO Z39.50-2003

EXT 1.5 Database Update Extended Service

The database Update Extended Service allows a client to request that the server update a
database: insert new records, replace or delete existing records, or update elements within

records.

Note: This service definition does not address concurrency; if multiple users try to update the
same record, it may be that only the first request served by the server will update the intended
data, and the remaining requests may update a record whose content has changed.

The parameters of the databaseUpdate Extended Service are those shown in Table-1 as well as

those in Table-6.

Table-6: Specific Parameters for DatabaseUpdate

Specific Task Parameter | Client Supplied | Server Supplied | Task Package
Parameter

action m m
databaseName m m
schema 0 0
suppliedRecords m

recordlds 0

supplementallds 0

correlationinfo 0 0
elementSetName 0 0
updateStatus ia ia
globalDiagnostics ia ia
taskPackageRecords ia ia
recordStatuses ia ia

action

databaseName

schema

The client indicates recordinsert, recordReplace,
recordDelete, or elementUpdate.

The client indicates the database to which the action
pertains.

The client indicates the database schema that applies
for this update.

Note: The action, databaseName, and schema are
specified once, and apply to all of the included records. It
is not possible to specify different values for different
records in the same task package. For separate Actions
(etc), use separate task packages.

©NISO Page 141

suppliedRecords

recordlds

supplementallds

Correlationinfo

ANSI/NISO Z39.50-2003

The client supplies one or more records. (Along with
each the client may also supply a recordld, supplemental
identification, and correlation information; see following
three parameters.) For recordinsert or recordReplace,
the client supplies whole records. For recordReplace or
recordDelete, each supplied record (or corresponding
supplemental identification or recordld) must include
sufficient information for the server to identify the
database record. For recordDelete, sufficient identifying
information should be supplied for each record, but the
whole record need not necessarily be supplied.

For elementUpdate, the elements within a supplied
record are to replace the corresponding elements within
the database record, and the remainder of the database
record is unaffected. Records must be supplied in a
manner that allows the corresponding elements in the
database record to be identified (e.g. via tags defined by
the schema). For any element within a supplied record, if
there is no corresponding element within the database
record, if there is more than a single occurrence of the
corresponding element, or if the element is not
sufficiently identified, the update will not be performed
for that record. (For elementUpdate, supplementalld may
be used for identification of the record, but not for
identification of elements.)

Corresponding to each supplied record the client may
optionally supply a record Id.

Corresponding to each supplied record the client may
supply supplemental identification to allow the server to
identify the database record, or to identify the correct
version of the database record. This may be a
timestamp, a version number, or may take some other
form, for example, a previous version of the record.

Corresponding to each supplied record, the client may
include one or both of the following:

1. A correlationNote — information pertaining to the
update of the record, for example, why it was updated,
who updated it, the nature of the update, etc.;

2. A correlationldentifier -- An identifier for the record

Correlationinfo provides a means for the client or user to
insert information into an Update ES task package,
corresponding to a particular record included within the
task package. This information allows a client or user
when subsequently retrieving the package (possibly a

©NISO Page 142

ElementSetName

updateStatus

ANSI/NISO Z39.50-2003
different client or user than that which originally
submitted the ES Update request), to discover this
information for a given record.

Correlationinfo is intended to be opaque to the server,
who should not process it or change it.

In case 1 above it would take the form of the note, a
human-readable (i.e. non-processable) string. In this
case, the user who originally inserted the information
may have anticipated that a different user might
subsequently retrieve the task package.

In case 2 above, it would take the form of an identifier. It
is not intended necessarily to be a unique or
unambiguous identifier of the record; it is intended to
uniquely and unambiguously identify the record only
within the task package. (Thus if the same record occurs
in two different task packages it may have different
correlation ids; conversely, a correlation id used to
identify a record within one task package may be
re-used to identify a different record in a different task
package.)

Thus a client may assign a unique id for each record in
an Update ES request and maintain a table for each
Update task package that correlates each id assigned
within the task package to the record to which it is
assigned, so that when the task package is retrieved, for
each instance of TaskPackageRecordStructure (each
such instance corresponds to one record that was in the
client Update ES request) the client will be able to
determine which record that instance pertains to
(correlationinfo is included within
TaskPackageRecordStructure).

The reason for the correlation identifier is that the actual
record might not be included within taskPackage
RecordStructure, or if it is, the record itself might not
have an unambiguous identifier. Thus its scope is much
narrower than an all-purpose identifier (it is therefore
defined as INTEGER, because integer representation is
sufficient for its purpose).

The client indicates an element set name indicating
which elements of the updated records are to be
included in the task package. If omitted, updated records
are not to be included in the task package.

This parameter occurs in the task package only when
taskStatus is ‘complete’ or 'aborted'. It is one of the
following:

©NISO Page 143

ANSI/NISO Z39.50-2003

Update Status Meaning
Success Update performed successfully.
Partial Update failed for one or more records.
Failure Server rejected execution of the task (one or more non-surrogate
diagnostics should be supplied in parameter globalDiagnostics).

See also EXT 1.5.1.

globalDiagnostics One or more non-surrogate diagnostics, supplied if
updateStatus is Failure.

taskPackageRecords When taskStatus is ‘complete': the task package
includes a structure for each supplied record. The
structure may include part or all of the updated record
(depending on 'elementSetName') or a surrogate
diagnostic (when recordStatus, below, is ‘failure’), as
well as correlationinfo and record status (see next
parameter).

When taskStatus is 'pending’ or ‘active': the task
package includes the above for each record for which
update action is complete. For those records for which
action is not complete, the structure includes the
correlationinfo and status.

recordStatuses Corresponding to each task package record, the task
package includes a record status:

Record Status Meaning
success The record was updated successfully.
queued The record is queued for update, or the update is in process (this

status may be used in lieu of inProcess, when the server does not
wish to distinguish between these two statuses).

inProcess The update for this record is in process.

failure The update for this record failed. A surrogate diagnostic should be
supplied in lieu of the record (within the structure corresponding to the
record, within the parameter taskPackageRecords).

See also EXT 1.5.1.

EXT 1.5.1 Summary of Status Parameters for Update ES

As noted in 3.2.9.5, OperationStatus and taskStatus both apply to Extended Services in general.
updateStatus and recordStatus are specific to Update. These distinguish the update task at large

from update action that applies to each individual record.

Update status

©NISO Page 144

ANSI/NISO Z39.50-2003
UpdateStatus is not set until the task is complete, or rejected. Its values are:

‘'success’
'partial’
‘failure’

recordStatus

In addition, there is a "record status" for each record. Values are:

'success'
'failure’
‘queued'
‘inProcess'

For each record, when the task package is initially set up, this status is set to 'queued’;
subsequently it is set to either 'success' or 'failure’ when update action is complete for the record.
In the interim, the status may change from 'queued' to 'inProcess' (the server may skip either of
these statuses, ‘queued’ and ‘inProcess’). So at any time after the task begins, any record may
have status of 'queued’, 'inProcess', 'success' or 'failure'. The status may change from ‘queued’ to
‘inProcess’ to ‘success’ or ‘failure’, but once the status becomes 'success' or 'failure’, it should not
subsequently change. One usage of this status is to enable a client to monitor the progress of the
task, on a record-by-record basis.

updateStatus is not set unt